Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Gonadal artery aneurysms (GADs) are extremely rare; their prevalence and natural history are unknown and their pathogenesis remains poorly understood. Based on the limited literature reports, these might present with rupture (ovarian artery) or pain and acute thrombosis (testicular artery). The present article reports the case of an 80-year-old woman who came to the emergency department (ED) with acute onset of abdominal and left flank pain. A computed tomography angiography (CTA) revealed a large retroperitoneal hematoma associated with the presence of a left ovarian artery aneurysm. The patient was taken to the angiography suite for a selective vessel catheterization and embolization with N-butyl-2-cyanoacrylate (NBCA). Following the procedure, her serial hemoglobin remained stable, her symptoms subsided, and she was discharged home 2 days later. The GADs are unrecognized entities until an acute event such as rupture occurs, and vessel embolization is effective for hemorrhage control. Close communication and collaboration with gynecologists and urologists are crucial to better define the prevalence, natural history, and the appropriate behavior and timing for elective treatment. With this article, the authors additionally present a review of the literature.
Nowadays, surgical planning is recognized as one of the most useful applications of three-dimensional (3D) printing. It has been demonstrated that 3D models may assist to overcome the surgical challenges of complex vascular anatomy and improve the endovascular skills required in certain procedures. Therefore, reproducing a patient based anatomical 3D model act as a tool for individualized preoperative planning and decision making with a direct positive impact in the clinical outcomes. Another interesting field concerning vascular surgery and bioprinting, is the possibility of developing a variety of prosthetic devices for treating vascular disease. The main objective is to overcome biocompatibility disadvantages of prosthesis made from synthetic fabrics among other shortcomings. These may include, long manufacturing times and the high costs of an individualized prosthetic device, challenges faced when an autologous vein is not available. Unfortunately, cases requiring this sophisticated management are usually faced in the context of emergency care with a limited number of therapeutic options and a high mortality rate. Understanding the complexity of vessels biology; such as the interactions between each layer of the vessel wall, is extremely important for making a 3D-printed vessel which could, in the close future, simulate a real human vessel. Achieving this would mean more availability and in consequence, cost reduction for treating complex vascular disease. These benefits would be reflected not only in lowering medical and hospital expenses, but also in the morbidity and mortality related to the surgical procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.