In this paper, we present an age-structured SEIR model that uses contact patterns to reflect the physical distance measures implemented in Portugal to control the COVID-19 pandemic. By using these matrices and proper estimates for the parameters in the model, we were able to ascertain the impact of mitigation strategies employed in the past. Results show that the March 2020 lockdown had an impact on disease transmission, bringing the effective reproduction number (R(t)) below 1. We estimate that there was an increase in the transmission after the initial lift of the measures on 6 May 2020 that resulted in a second wave that was curbed by the October and November measures. December 2020 saw an increase in the transmission reaching an R(t) = 1.45 in early January 2021. Simulations indicate that the lockdown imposed on the 15 January 2021 might reduce the intensive care unit (ICU) demand to below 200 cases in early April if it lasts at least 2 months. As it stands, the model was capable of projecting the number of individuals in each infection phase for each age group and moment in time.
<abstract><p>In this work we use simple mathematical models to study the impact of vaccination against COVID-19 in Portugal. First, we fit a SEIR type model without vaccination to the Portuguese data on confirmed cases of COVID-19 by the date of symptom onset, from the beginning of the epidemic until the 23rd January of 2021, to estimate changes in the transmission intensity. Then, by including vaccination in the model we develop different scenarios for the fade-out of the non pharmacological intervention (NPIs) as vaccine coverage increases in the population according to Portuguese vaccination goals. We include a feedback function to mimic the implementation and relaxation of NPIs, according to some disease incidence thresholds defined by the Portuguese health authorities.</p></abstract>
We present a methodology to connect an ordinary differential equation (ODE) model of interacting entities at the individual level, to an open Markov chain (OMC) model of a population of such individuals, via a stochastic differential equation (SDE) intermediate model. The ODE model here presented is formulated as a dynamic change between two regimes; one regime is of mean reverting type and the other is of inverse logistic type. For the general purpose of defining an OMC model for a population of individuals, we associate an Ito processes, in the form of SDE to ODE system of equations, by means of the addition of Gaussian noise terms which may be thought to model non essential characteristics of the phenomena with small and undifferentiated influences. The next step consists on discretizing the SDE and using the discretized trajectories computed by simulation to define transitions of a finite valued Markov chain; for that, the state space of the Ito processes is partitioned according to some rule. For the example proposed for illustration, the state space of the ODE system referred – corresponding to a model of a viral infection – is partitioned into six infection classes determined by some of the critical points of the ODE system; we detail the evolution of some infected population in these infection classes.
We study—with existence and unicity results—a variant of the SIR model for an infectious disease incorporating both the possibility of a death outcome—in a short period of time—and a regime switch that can account for the mitigation measures used to control the spreading of the infections, such as a total lockdown. This model is parametrised by three parameters: the basic reproduction number, the mortality rate of the infected, and the duration of the disease. We discuss a particular example of application to Portuguese COVID-19 data in two short periods just after the start of the epidemic in 4 March 2020, with the first two cases dated that day. We propose a simple and effective method for the estimation of the main parameters of the disease, namely, the basic reproduction number and the mortality rate of the infected. We correct these estimated values to take into account the asymptomatic non-diagnosed members of the population. We compare the outcome of the model in the cases of the existence, or not, of a regime switch, and under three different scenarios, with a remarkable agreement between model and data deaths in the case of our basis scenario. In a final short remark, we deal with the existence of symmetries for the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.