The neurotransmitter acetylcholine (ACh) regulates a diverse array of physiological processes throughout the body. Despite its importance, cholinergic transmission in the majority of tissues and organs remains poorly understood owing primarily to the limitations of available ACh-monitoring techniques. We developed a family of ACh sensors (GACh) based on G-protein-coupled receptors that has the sensitivity, specificity, signal-to-noise ratio, kinetics and photostability suitable for monitoring ACh signals in vitro and in vivo. GACh sensors were validated with transfection, viral and/or transgenic expression in a dozen types of neuronal and non-neuronal cells prepared from multiple animal species. In all preparations, GACh sensors selectively responded to exogenous and/or endogenous ACh with robust fluorescence signals that were captured by epifluorescence, confocal, and/or two-photon microscopy. Moreover, analysis of endogenous ACh release revealed firing-pattern-dependent release and restricted volume transmission, resolving two long-standing questions about central cholinergic transmission. Thus, GACh sensors provide a user-friendly, broadly applicable tool for monitoring cholinergic transmission underlying diverse biological processes.
What began a quarter century ago as two separate threads in the fabric of our knowledge of cellular control mechanisms (193,212, 233) has merged today into a single dominant pattern: the synarchic regulation of cell function by the two messengers, calcium ion and cyclic AMP. It has become evident that these messengers are involved in coupling stimulus to response in a wide variety of differentiated cell types when these cells are called on to perform their specific function. In regulating cellular function, Ca2+ and CAMP nearly always function together. Their interactions are plastic rather than stereotyped in character. Although the molecular and cellular mechanisms involved in the initiation, propagation, reception, and termination of the CAMP message have 938
Recent studies have demonstrated an important role for T-type Ca2ϩ channels (T-channels) in controlling the excitability of peripheral pain-sensing neurons (nociceptors). However, the molecular mechanisms underlying the functions of T-channels in nociceptors are poorly understood. Here, we demonstrate that reducing agents as well as endogenous metal chelators sensitize C-type dorsal root ganglion nociceptors by chelating Zn 2ϩ ions off specific extracellular histidine residues on Ca v 3.2 T-channels, thus relieving tonic channel inhibition, enhancing Ca v 3.2 currents, and lowering the threshold for nociceptor excitability in vitro and in vivo. Collectively, these findings describe a novel mechanism of nociceptor sensitization and firmly establish reducing agents, as well as Zn 2ϩ , Zn 2ϩ -chelating amino acids, and Zn 2ϩ -chelating proteins as endogenous modulators of Ca v 3.2 and nociceptor excitability.
Summary Lineage conversion of differentiated cells in response to hormonal feedback has yet to be described. To investigate this we studied the adrenal cortex, which is composed of functionally distinct concentric layers that develop postnatally, the outer zona Glomerulosa (zG) and the inner zona Fasiculata (zF). These layers have separate functions, are continuously renewed in response to physiological demands and are regulated by discrete hormonal feedback loops. Their cellular origin, lineage relationship and renewal mechanism, however, remain poorly understood. Cell fate mapping and gene deletion studies using zG-specific Cre expression demonstrate that differentiated zG cells undergo lineage conversion into zF cells. In addition, zG maintenance is dependent on the master transcriptional regulator Steroidogenic Factor 1 (SF-1) and zG-specific Sf-1 deletion prevents lineage conversion. These findings demonstrate that adrenocortical zonation and regeneration result from lineage conversion and may provide a paradigm for homeostatic cellular renewal in other tissues.
When inappropriate for salt status, the mineralocorticoid aldosterone induces cardiac and renal injury. Autonomous overproduction of aldosterone from the adrenal zona glomerulosa (ZG) is also the most frequent cause of secondary hypertension. Yet, the etiology of nontumorigenic primary hyperaldosteronism caused by bilateral idiopathic hyperaldosteronism remains unknown. Here, we show that genetic deletion of TWIK-related acid-sensitive K (TASK)-1 and TASK-3 channels removes an important background K current that results in a marked depolarization of ZG cell membrane potential. Although TASK channel deletion mice (TASK −/− ) adjust urinary Na excretion and aldosterone production to match Na intake, they produce more aldosterone than control mice across the range of Na intake. Overproduction of aldosterone is not the result of enhanced activity of the renin–angiotensin system because circulating renin concentrations remain either unchanged or lower than those of control mice at each level of Na intake. In addition, TASK −/− mice fail to suppress aldosterone production in response to dietary Na loading. Autonomous aldosterone production is also demonstrated by the failure of an angiotensin type 1 receptor blocker, candesartan, to normalize aldosterone production to control levels in TASK −/− mice. Thus, TASK −/− channel knockout mice exhibit the hallmarks of primary hyperaldosteronism. Our studies establish an animal model of nontumorigenic primary hyperaldosteronism and identify TASK channels as a possible therapeutic target for primary hyperaldosteronism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.