Altered immune and/or inflammatory response plays an important role in cases of recurrent pregnancy loss (RPL) and repeated implantation failure (RIF). Exacerbation of the maternal immune response through increased NK cell activity and inflammatory cytokines can cause embryo rejection leading to abortion or embryo implantation failure. Immunosuppressors or immunomodulators can help or prevent this condition. Currently, lipid emulsion therapy (LET) has emerged as a treatment for RPL and RIF in women with abnormal NK cell activity, by decreasing the exacerbated immune response of the maternal uterus and providing a more receptive environment for the embryo. However, the mechanisms by which the intralipid acts to reduce NK cell activity are still unclear. In this review, we focus on the studies that conducted LET to treat patients with RPL and RIF with abnormal NK cell activity. We find that although some authors recommend LET as an effective intervention, more studies are necessary to confirm its effectiveness in restoring NK cell activity to normal levels and to comprehend the underlying mechanisms of the lipids action in ameliorating the maternal environment and improving the pregnancy rate.
The bioavailability of glucoside flavonoids is influenced by the nature of the sugar, glucosides being absorbed faster than rhamnoglucosides, for example. One strategy to enhance the bioavailability is enzymatic hydrolysis. In this study, some kinetic parameters of hesperidinase-mediated hydrolysis of rutin were evaluated using an UHPLC/QTOF-MSE analysis of the products of a bioconversion reaction. The resulting hydrolyzed rutins (after 4, 8 and 12 h of reaction) were submitted to anti-proliferative and Cytokinesis-Block Micronucleus (CBMN) assays in CHO-K1 cells. In the hesperidinase-mediated hydrolysis, the final concentration of quercetin-3-O-glucoside (Q3G) was directly proportional to the rutin concentration and inversely proportional to the reaction time. At an anti-proliferative concentration (2.5 μg/mL), hydrolyzed rutin derivatives did not show a mutagenic effect, except for the sample with a higher content of Q3G (after 4 h of the enzymatic hydrolysis of rutin). Moreover, the higher Q3G content in hydrolyzed rutin protected the CHO-K1 cells 92% of the time against methyl methanesulfonate-induced mutagenic damage. These results suggested that the anti-mutagenic effect of hydrolyzed rutin might be related to antioxidant and cell death induction. Presenting a good lipophilicity/hydrophilicity ratio, together with antioxidant and anti-mutagenic activities, the hesperidinase-mediated hydrolyzed rutin seemed to be a promisor raw material for the development of food supplements.
The enzyme L-asparaginase (L-asparagine amidohydrolase) catalyzes the breakdown of L-asparagine into aspartate and ammonia, which leads to an anti-neoplastic activity stemming from its capacity to deplete L-asparagine concentrations in the bloodstream, and it is therefore used in cases of acute lymphoblastic leukemia (ALL) to inhibit malignant cell growth. Nowadays, this anti-cancer enzyme, largely produced by Escherichia coli, is well established on the market. However, E. coli L-asparaginase therapy has side effects such as anaphylaxis, coagulation abnormality, low plasma half-life, hepatotoxicity, pancreatitis, protease action, hyperglycemia, and cerebral dysfunction. This review provides a perspective on the use of filamentous fungi as alternative cell factories for L-asparaginase production. Filamentous fungi, such as various Aspergillus species, have superior protein secretion capacity compared to yeast and bacteria and studies show their potential for the future production of proteins with humanized N-linked glycans. This article explores the past and present applications of this important enzyme and discusses the prospects for using filamentous fungi to produce safe eukaryotic asparaginases with high production yields.
Background: Recurrent Pregnancy Loss (RPL) and Recurrent Implantation Failure (RIF) are highly heterogeneous condition and many of the mechanisms involved still require elucidation. The aim was to analyze the lipidomic profile in plasma of women with RPL and RIF before and after receiving the Lipid Emulsion Therapy (LET) containing 10% fish oil (SMOFlipid ® 20%).Methods: This study included twenty-six women with RPL or RIF from immunological or inflammatory causes, with elevated natural killer cell levels and divided into a Pregnancy Loss or a Live Birth group according to the outcome. The women received intravenous LET and sample collecting was done before the first, third and fifth dose of LET in the pregnant women. Ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF MS) and multivariate statistical methods were performed to evaluate the profile of phospholipids present in the women's plasma.Results: An increase of phosphatidylcholines (PC) 40:8 and 36:5 levels with predominance of n6 polyunsaturated fatty acids (PUFA) was observed in plasma lipids of the Pregnancy Loss Group compared to Live Birth Group. We also observed an increase in the relative abundance of n3 PUFA-PC species (42:10 and 36:6) and LysoPC 15:0 with the long term use of LET.
Conclusion:The greater availability of n3 PUFA in plasma of the pregnant women stemming from LET use can be considered advantageous regarding the alteration of the phospholipid profile and its postulated anti-inflammatory and immunomodulatory role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.