p-Coumaric acid (p-CA), also known as 4-hydroxycinnamic acid, is a phenolic acid, which has been widely studied due to its beneficial effects against several diseases and its wide distribution in the plant kingdom. This phenolic compound can be found in the free form or conjugated with other molecules; therefore, its bioavailability and the pathways via which it is metabolized change according to its chemical structure. p-CA has potential pharmacological effects because it has high free radical scavenging, anti-inflammatory, antineoplastic, and antimicrobial activities, among other biological properties. It is therefore essential to choose the most appropriate and effective analytical method for qualitative and quantitative determination of p-CA in different matrices, such as plasma, urine, plant extracts, and drug delivery systems. The most-reported analytical method for this purpose is high-performance liquid chromatography, which is mostly coupled with some type of detectors, such as UV/Vis detector. However, other analytical techniques are also used to evaluate this compound. This review presents a summary of p-CA in terms of its chemical and pharmacokinetic properties, pharmacological effects, drug delivery systems, and the analytical methods described in the literature that are suitable for its quantification.
The development of facile and rapid quantification of biologically active biomolecules such as isotretitoin in therapeutic drugs contained in many generic formu- lations is necessary for determining their efficiency and their quality to improve the human health care. Isotretritoin finds its applications in the maintenance of epithelial tissues. Different processes to date such as normal phase HPLC, or gas chromatrography am- ong others are able to separate and quantify isote- troin. However, the extraction is quite complex and in the case of HPLC, the analysis requires long retention times. In such context, an isocratic reversed- phase high-performance liquid chromatography (HP- LC) technique coupled with an UV-vis detector is described here for easy separation and quantification of 13-cis-retinoic (isotretinoin) from soft gelatin capsule formulations. The isotretinoin was extracted from three different commercial drug samples with tetrahydrofuran (THF) solvent by a procedure that can be completed in less than 10 minutes. Subsequent separation and quantification were accomplished in less than 5 minutes under isocratic reversed-phase conditions on a Lichrospher RP18 column and a mobile phase consisting of 0.01% TFA/acetonitrile (15/85, v/v) at a flow rate of 1.0 mL/min. Isotretoin was detected for the three samples via its UV-vis absorbance at 342 nm. The method was validated and the results showed good linearity, precision and accuracy for sensitive and selective quantitative determination of isotretinoin in the different pharmaceutical formulations. We found that the average isotretinoin content in two of the three commercial pro- ducts fell outside the 90-110% United States Pha- rmacopeia specifications. Consequently, the facile extraction and the precise method for the biomole- cule quantification open up tremendous possibilities in improving the quality control of drugs which can exist as different generic brands
Neuronal loss is the ultimate pathophysiologic event in central nervous system (CNS) diseases and replacing these neurons is one of the most significant challenges in regenerative medicine. Providing a suitable microenvironment for new neuron engraftment, proliferation, and synapse formation is a primary goal for 3D bioprinting. Among the various biomaterials, gelatin methacrylate (GelMA) stands out due to its Arg-Gly-Asp (RGD) domains, which assure its biocompatibility and degradation under physiological conditions. This work aimed to produce different GelMA-based bioink compositions, verify their mechanical and biological properties, and evaluate their ability to support neurogenesis. We evaluated four different GelMA-based bioink compositions; however, when it came to their biological properties, incorporating extracellular matrix components, such as GeltrexTM, was essential to ensure human neuroprogenitor cell viability. Finally, GeltrexTM: 8% GelMA (1:1) bioink efficiently maintained human neuroprogenitor cell stemness and supported neuronal differentiation. Interestingly, this bioink composition provides a suitable environment for murine astrocytes to de-differentiate into neural stem cells and give rise to MAP2-positive cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.