Homocystinuria is an inherited metabolic disease biochemically characterized by tissue accumulation of homocysteine (Hcy). Mental retardation, ischemia and other neurological features, whose mechanisms are still obscure are common symptoms in homocystinuric patients. In this work, we investigated the effect of Hcy administration in Wistar rats on some parameters of energy metabolism in the hippocampus, a cerebral structure directly involved with cognition. The parameters utilized were 14CO2 production, glucose uptake, lactate release and the activities of succinate dehydrogenase and cytochrome c oxidase (COX). Chronic hyperhomocysteinemia was induced by subcutaneous administration of Hcy twice a day from the 6th to the 28th day of life in doses previously determined in our laboratory. Control rats received saline in the same volumes. Rats were killed 12 h after the last injection. Results showed that Hcy administration significantly diminished 14CO2 production and glucose uptake, as well as succinate dehydrogenase and COX activities. It is suggested that impairment of brain energy metabolism may be related to the neurological symptoms present in homocystinuric patients.
Hyperhomocysteinemia occurs in homocystinuria, an inherited metabolic disease clinically characterized by thromboembolic episodes and a variable degree of neurological dysfunction whose pathophysiology is poorly known. In this study, we induced elevated levels of homocysteine (Hcy) in blood (500 microM), comparable to those of human homocystinuria, and in brain (60 nmol/g wet tissue) of young rats by injecting subcutaneously homocysteine (0.3-0.6 micromol/g of body weight) twice a day at 8-hr intervals from the 6th to the 28th postpartum day. Controls received saline in the same volumes. Na(+),K(+)-ATPase and Mg(2+)-ATPase activities were determined in the hippocampus of treated Hcy- and saline-treated rats. Chronic administration of Hcy significantly decreased (40%) Na(+),K(+)-ATPase activity but did not alter Mg(2+)-ATPase activity. Considering that Na(+),K(+)-ATPase plays a crucial role in the central nervous system, our results suggest that the brain dysfunction found in homocystinuria may be related to the reduction of brain Na(+),K(+)-ATPase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.