In a previous work, we proposed a new integer programming formulation for the graph coloring problem which, to a certain extent, avoids symmetry. We studied the facet structure of the 0/1-polytope associated with it. Based on these theoretical results, we present now a Branch-and-Cut algorithm for the graph coloring problem. Our computational experiences compare favorably with the well-known exact graph coloring algorithm DSATUR.
We present an approach based on integer programming formulations of the graph coloring problem. Our goal is to develop models that remove some symmetrical solutions obtained by color permutations. We study the problem from a polyhedral point of view and determine some families of facets of the 0/1-polytope associated with one of these integer programming formulations. The theoretical results described here are used to design an efficient Cutting Plane algorithm.
a b s t r a c tThe Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. In this paper, we propose a new Integer Programming formulation for the problem and computationally evaluate the strength of its Linear Programming relaxation. Computational results are also presented for a cutting plane algorithm that uses a number of valid inequalities associated with the proposed formulation. Some of these inequalities are shown to be facet defining for the convex hull of feasible solutions to that formulation. These inequalities proved very effective when used to reinforce Linear Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.