An awareness of increasing climate and health problems has driven the development of new functional and affordable soot-oxidation catalysts for stationary sources, such as fireplaces. In this study, Al(OH)3, water glass and acidic aluminium phosphate binder materials were mixed with soot-oxidation catalysts. The effect of the binder on the performance of the Ag/La-Al2O3 catalyst was examined, while the Pt/La-Al2O3 catalyst bound with Al(OH)3 was used as a reference. Soot was oxidised above 340 °C on the Ag/La-Al2O3 catalyst, but at 310 °C with same catalyst bound with Al(OH)3. The addition of water glass decreased the catalytic performance because large silver crystals and agglomeration resulted in a blockage of the support material’s pores. Pt/La-Al2O3 bound with Al(OH)3 was ineffective in a fireplace environment. We believe that AgOx is the active form of silver in the catalyst. Hence, Ag/La-Al2O3 was shown to be compatible with the Al(OH)3 binder as an effective catalyst for fireplace soot oxidation.
Anisotropic surfaces with micropillar- or micropillar/nanobump structures and anisotropic wetting behavior were fabricated. Structures were arranged as three parallel zones where the structure of the middle zone differed from that of the edge zones. The widths of the middle zones were increased systematically, and the effects of the middle zone structures and widths on the contact and sliding angles of water were investigated. Structures were fabricated on PP by injection molding. Microstructured mold inserts for injection molding were obtained by structuring aluminum foils with a microworking robot, and hierarchically structured mold inserts by anodizing the microstructured foils. It was possible to create surfaces where the microstructure in the middle zone was lower or higher than on the edges, or where the middle zone had only nanostructure or was unstructured. The behavior of water on the surfaces was characterized by measuring the dynamic contact angles and sliding angles parallel and perpendicular to the zones. Hydrophobic surfaces were achieved. With appropriate middle zone widths, clearly differing parallel and perpendicular contact angles were measured and elongation of droplets along the middle zones was detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.