Thanks to that, "the bio-industry," which is the main component of the EU economy referred to as "bio-economy" ("bioeconomy"), will play an important role in stimulating sustainable growth and increasing Europe's competitiveness by reindustrialization and the revitalization of rural areas, providing tens of thousands of jobs in the field of research, development, and production over the next decade [3].The Bioeconomy Program for Europe is going to be an evolutionary program. Expected to develop so-called value chains, the implementation of which will ultimately lead to the creation of so-called biorefinery that a comprehensive and zero-waste will be recycled biomass. The most important technological challenges, political and market, therefore will be prior to commercialization of innovative solutions to full scale. These challenges cannot be overcome by an individual company or dispersed industry, so it is necessary to approach the whole system of management system biomass [4]. This is important because of the need to reverse the current trend of significant bioeconomic investments in non-European regions, where conditions seem to be more attractive. The longterm research and innovation jointly financed by public and private entities can help solve this problem. This process will be implemented through the creation and implementation of appropriate and developed value chains, which will lead to reducing the risk of investment in demonstration projects on the implementation of innovative processes.As part of the preparatory work for the start-up of the scope of the European bio-economy, there was a plan developed for Strategic Innovation and Research Agenda (SIRA). This document proposes a coherent set of actions that should be implemented through established "Biobased Industry Consortium" (BIC), namely:• Implementation of projects aimed toward the integration and implementation of technology and scientific results and the introduction of technology on a commercial scale by implementing demonstration and flagship projects• Implementation of development projects aimed at filling the gaps in research and technological innovation • Supporting projects taking challenges cross-sectors [5]Schematically, the areas covered by value chains are shown in Fig.1.As it can be seen from the schematic products, semi-finished and all residues of the process as a result of the implementation of the objectives set in the value chains should be directed to biorefinery systems, in order to complete the transformation into energy carriers and biochemicals for various purposes.
Many factors, such as climate change and the associated risk of increasing the average temperature on the globe, energy security and the finishing of fossil fuel deposits have caused other renewable energy sources to be sought. Transport, as a branch of industry largely responsible for air pollution and greenhouse gas emissions in large cities, requires the necessary changes in the way vehicles are powered. Until now, the fuels available at petrol stations use admixtures of first generation biofuels, such as bioethanol, as a 5% additive to motor gasolines and biodiesel (FAME) as a 7% additive to diesel oil. The article presents the idea of biorefinery installations, specifies the spectrum of substrates of the second and advanced generations, which may be a biorefinery input, including waste oils that can be used to produce hydrogenated HVO vegetable oils and other high-value products. The paper presents he existing biorefinery plant in Venice resulting from the transformation of a conventional oil refinery in which HVO fuel is produced. The article also presents the parameters of this new biofuel and compared them with the parameters of other fuels used to power self-ignition engines, such as FAME and diesel, along with discussing the prospects for HVO fuel development in Europe.
Due to finishing of conventional fossil energy resources, energy security, the desire of independence from imported fuels and reduction of emission of harmful compounds and greenhouse gases in the atmosphere, there is need to explore new technologies using alternative energy sources. One of alternative energy sources, which can be used in transportation, is natural gas. Natural gas can be use in two forms: as a gas (CNG-Compressed Natural Gas), and as a liquid (LNG-Liquefied Natural Gas). Currently the most often used is CNG fuel. The vehicles, which can be supplied by CNG or LNG fuels are called Natural Gas Vehicles (NGV). The article presents the basic properties of liquefied natural gas (LNG) used as a fuel for internal combustion engines. There were made the comparison of the characteristics of CNG, LNG and diesel oil as an engine fuels in different aspects. There was presented the measurement method and measurement equipment applied in the Motor Transport Institute, used to measure the fuel consumption of LNG bus in real traffic conditions in comparison to bus, supplied by diesel oil. The results of measurements in SORT tests were presented and compared with fuel consumption of similar buses fuelled with diesel fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.