Hydrophobe Quantenpunkte können in die Doppelschichtmembran von Lipidvesikeln eingeschlossen und von dort selektiv in Plasmamembranen oder in das Cytoplasma lebender Zellen freigesetzt werden (siehe Bild). Die Zell‐ und Lipidmembranen können jede Art von hydrophoben Nanopartikeln einschließen, deren Größe mit der Membrandicke übereinstimmt, was Möglichkeiten für Einzelzellanwendungen in der Nanobiotechnologie bietet.
Nuclear receptors initiate transcription, interact with regulatory proteins, and are influenced by hormones, drugs, and pollutants. Herein, we discover ligand-specific mobility patterns of human estrogen receptor-alpha (ER) in living cells using diffusion-time distribution analysis (DDA). This novel method, based on fluorescence correlation spectroscopy (FCS), is especially suited to unraveling multiple protein interactions in vivo at native expression levels. We found that ER forms a limited number of distinct complexes with a varying population by dynamic interaction with other nuclear components. Dose-response curves of different ligands could be obtained for each receptor interaction. The potential to identify interacting proteins was demonstrated by comparing DDA of the ER cofactor SRC-3 attached to yellow fluorescent protein (YFP) with those of YFP-ER. Our findings open up new routes to elucidating transcription regulation and to detecting and distinguishing pharmacologically and toxicologically active compounds in vivo. Moreover, DDA provides a general approach to monitoring biochemical networks in individual living cells.
We discuss the successful transport of jurkat cells and 5D10 hybridoma cells using a reciprocating micropump with nozzle-diffuser elements. The effect of the pumping action on cell viability and proliferation, as well as on the damaging of cellular membranes is quantified using four types of well-established biological tests: a trypan blue solution, the tetrazolium salt WST-1 reagent, the LDH cytotoxicity assay and the calcium imaging ATP test. The high viability levels obtained after pumping, even for the most sensitive cells (5D10), indicate that a micropump with nozzle-diffuser elements can be very appropriate for handling living cells in cell-on-a-chip applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.