The European Green Deal is the new strategy for economic growth adopted by the European Commission (EC) in late 2019. One of the most important tasks in the realisation of this strategy is the mobilisation of the industry for a clean and circular economy (CE). Currently, the European Union (EU) is in the process of transformation towards a CE model, which was announced in 2014. The CE assumes a transition from a linear model based on take–make–dispose to a circular model, in which waste, if it arises, becomes a valuable resource. At the same time, it is recommended to use raw materials (RMs) more efficiently and to recycle them. The EC underlines that both changes in the management of mineral resources in individual member states and their effects should be monitored. Therefore, in 2018, the EC pointed out issues related to RM management as important elements of the monitoring framework in transformation process towards CE. The paper presents strategic directions aimed at sustainable and circular RM management in the EU, with a strong emphasis on the key elements of sustainable development—environmental, economic and social. Moreover, the importance of mineral resources management in the EC in the context of transformation towards the European Green Deal and CE is presented, and the results of selected CE indicators related to the RMs, and indicators that present sustainable RMs management are discussed. The core of the paper is presentation of a set of recommended actions which should be taken in coming years with strong emphasis on the implementation of the sustainable development (SD) principles. RM management faces a number of challenges, primarily in achieving increased levels of critical raw materials (CRMs) recycling, as well as the greater involvement of stakeholders themselves and awareness raising in the field of SD and CE among enterprises operating in the RMs sector. Currently, all member states are working together to accelerate the transformation process in the area of CE and the European Green Deal, e.g., by implementing national CE programs. A great opportunity to accelerate the transformation process is the new financial perspective for projects under the balanced and circular management of RMs—Horizon Europe, which plans to finance the new projects on RMs management and recycling.
Mobilizing industry and transforming industrial sectors to a circular economy (CE) is one of the key areas of activities in the European Green Deal (EGD)—the newest strategy of economic growth in European Union (EU). In the CE, the raw materials that can be recovered from various waste streams play a key role, therefore, recommendations for their management were developed, both at the European and national level. In Poland, the raw material recovery sector is one of the strategic sectors (key industries) described in several documents determining the further directions of economic growth in the country. This paper presents the revision of these documents and guidelines for the implementation of the CE in the raw material recovery sector. The scope of the paper also includes a description of the current state of the raw materials recovery sector and its return, supported by the analysis of drivers and barriers in its further development. In previous years, a dynamic development of the recovery industry was observed, followed by formation of new companies (dominated by medium-sized companies comprising ~50% of entities in the sector) and increasing amount of people employed (~70,700 people). A growing level of processing of secondary raw materials with the use of more and more innovative technologies has been observed, which could contribute to the improvement of the level of innovation of the national economy. There also some barriers, such as the lack of sufficiently developed industrial symbiosis (IS) and long-term support for the implementation of recovery technologies. The growing ecological awareness of society and enterprises themselves, as well as the growing belief in the importance of resource recovery for environmental protection, suggest the possibility of subsequent development of the raw materials recovery sector. Further actions in this field will be taken to strengthen the implementation of the CE in the country.
Transformation toward a circular economy (CE) model is one of the main priorities of the European Commission (EC). In the previous years, most of the European countries prepared national documents presenting their possibilities and plans for implementing CE in the country. In Poland, in 2019, the CE roadmap was approved by the government. Bioeconomy was indicated in this document as one of the key areas of CE implementation in Poland. This paper presents a detailed review of the actions needed for the transformation toward the CE model in Poland, and the units responsible for their implementation in the bioeconomy sector. The most important actions include creating conditions for the development of bioeconomy and building local value chains and a raw material base. Moreover, actions in the energy sector and transformation of industry is also indicated. Poland places great emphasis on strengthening cooperation between industry and the science sector, which should contribute to the implementation of innovative solutions in the whole economy, including bioeconomy. Therefore, it is necessary to integrate all activities taken by various stakeholders and the government at the central, regional and local level. A great opportunity to further development of bioeconomy in Poland is large resources of biomass in country. An increase in the biomass usage can positively accelerate the transformation process towards CE. Further efforts are required and planned in this area, based on the directions indicated in the Polish CE roadmap.
The most important raw material needed for food production is phosphorus (P), which cannot be replaced by other elements. P is listed as a Critical Raw Material (CRM) for the European Union (EU). It is an element essential for human nutrition and is used for fertiliser production. The key importance of P for human life is evidenced by the fact that if there were not enough P in fertilisers, we would only be able to feed 1/3 of the world’s population. Unfortunately, in Visegrad Group (V4) countries, Poland, Slovakia, Czech Republic, and Hungary, there is a lack of mineral deposits of phosphate rock. Therefore, there is a strong need to cover the demand for the P by importing from countries of varying stability, both economic and political, such as Russia, China, or Morocco. It is risky; if the borders for deliveries of goods are closed, it may be impossible to meet the needs of P. On the other hand, V4 countries have large secondary P resources in P-rich waste, which are lost due to P is not recovered on an industrial scale. The paper presents the importance of P raw materials in V4, the revision of primary and secondary P sources that can be used in agricultural systems, as well as the structure of import and export of P raw materials in these countries. In addition, examples of good phosphorus recovery practices in the V4 countries are presented. They include a list of initiatives dedicated to the sustainable management of P resources, and examples of P recovery projects. Implementation of P recovery for internal P-rich waste in V4 could ensure the safety of food production in this region. Such and similar initiatives may contribute to faster independence of the V4 countries from the import of P raw materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.