Niemann-Pick type C (NPC) disease is predominantly caused by mutations in the NPC1 protein that affect intracellular cholesterol trafficking and cause accumulation of unesterified cholesterol and other lipids in lysosomal storage organelles. We report the use of a series of small molecule histone deacetylase (HDAC) inhibitors in tissue culture models of NPC human fibroblasts. Some HDAC inhibitors lead to a dramatic correction in the NPC phenotype in cells with either one or two copies of the NPC1 I1061T mutation, and for several of the inhibitors, correction is associated with increased expression of NPC1 protein. Increased NPC1 I1061T protein levels may partially account for the correction of the phenotype, because this mutant can promote cholesterol efflux if it is delivered to late endosomes and lysosomes. The HDAC inhibitor treatment is ineffective in an NPC2 mutant human fibroblast line. Analysis of the isoform selectivity of the compounds used implicates HDAC1 and/or HDAC2 as likely targets for the observed correction, although other HDACs may also play a role. LBH589 (panobinostat) is an orally available HDAC inhibitor that crosses the blood–brain barrier and is currently in phase III clinical trials for several types of cancer. It restores cholesterol homeostasis in cultured NPC1 mutant fibroblasts to almost normal levels within 72 h when used at 40 nM. The findings that HDAC inhibitors can correct cholesterol storage defects in human NPC1 mutant cells provide the potential basis for treatment options for NPC disease.
Herein we chronicle the discovery of CX-4945 (25n), a first-in-class, orally bioavailable ATP-competitive inhibitor of protein kinase CK2 in clinical trials for cancer. CK2 has long been considered a prime cancer drug target because of the roles of deregulated and overexpressed CK2 in cancer-promoting prosurvival and antiapoptotic pathways. These biological properties as well as the suitability of CK2's small ATP binding site for the design of selective inhibitors, led us to fashion novel therapeutic agents for cancer. The optimization leading to 25n (K(i) = 0.38 nM) was guided by molecular modeling, suggesting a strong binding of 25n resulting from a combination of hydrophobic interactions, an ionic bridge with Lys68, and hydrogen bonding with the hinge region. 25n was found to be highly selective, orally bioavailable across species (20-51%) and efficacious in xenograft models. The discovery of 25n will allow the therapeutic targeting of CK2 in humans for the first time.
In this article we describe the preclinical characterization of 5-(3-chlorophenylamino) benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first orally available small molecule inhibitor of protein CK2 in clinical trials for cancer. CX-4945 was optimized as an ATP-competitive inhibitor of the CK2 holoenzyme (Ki = 0.38 nM). Iterative synthesis and screening of analogs, guided by molecular modeling, led to the discovery of orally available CX-4945. CK2 promotes signaling in the Akt pathway and CX-4945 suppresses the phosphorylation of Akt as well as other key downstream mediators of the pathway such as p21. CX-4945 induced apoptosis and caused cell cycle arrest in cancer cells in vitro. CX-4945 exhibited a dose-dependent antitumor activity in a xenograft model of PC3 prostate cancer model and was well tolerated. In vivo time-dependent reduction in the phosphorylation of the biomarker p21 at T145 was observed by immunohistochemistry. Inhibition of the newly validated CK2 target by CX-4945 represents a fresh therapeutic strategy for cancer.
Aims/hypothesis Lipolytic breakdown of endogenous lipid pools in pancreatic beta cells contributes to glucosestimulated insulin secretion (GSIS) and is thought to be mediated by acute activation of neutral lipases in the amplification pathway. Recently it has been shown in other cell types that endogenous lipid can be metabolised by autophagy, and this lipophagy is catalysed by lysosomal acid lipase (LAL). This study aimed to elucidate a role for LAL and lipophagy in pancreatic beta cells. Methods We employed pharmacological and/or genetic inhibition of autophagy and LAL in MIN6 cells and primary islets. Insulin secretion following inhibition was measured using RIA. Lipid accumulation was assessed by MS and confocal microscopy (to visualise lipid droplets) and autophagic flux was analysed by western blot. Results Insulin secretion was increased following chronic (≥8 h) inhibition of LAL. This was more pronounced with glucose than with non-nutrient stimuli and was accompanied by augmentation of neutral lipid species. Similarly, following inhibition of autophagy in MIN6 cells, the number of lipid droplets was increased and GSIS was potentiated. Inhibition of LAL or autophagy in primary islets also increased insulin secretion. This augmentation of GSIS following LAL or autophagy inhibition was dependent on the acute activation of neutral lipases. Conclusions/interpretation Our data suggest that lysosomal lipid degradation, using LAL and potentially lipophagy, contributes to neutral lipid turnover in beta cells. It also serves as a constitutive negative regulator of GSIS by depletion of substrate for the non-lysosomal neutral lipases that are activated acutely by glucose.
The syntheses and photophysical/photochemical properties of two amide-tethered coumarin-labeled nicotinamides are described. Photochemical studies of 6-bromo-7-hydroxycoumarin-4-ylmethylnicotinamide (BHC-nicotinamide) revealed an unexpected solvent effect. This result is rationalized by computational studies of the different protonation states using TD-DFT with the M06L/6-311+G** method with implicit and explicit solvation models. Molecular orbital energies responsible for the λ(max) excitation show that the functionalization of the coumarin ring results in a strong red-shift from 330 to 370 nm when the pH of solution is increased from 3.06 to 8.07. From this MO analysis, a model for solvent interactions has been proposed. The BHC-nicotinamide proved to be photochemically stable, which is also interpreted in terms of NBO calculations. The results provide a set of principles for the rational design of either photostable labeling reagents or photolabile cage compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.