Cortical neurons of the superficial layers (II-IV) represent a pivotal neuronal population involved in the higher cognitive functions of the human and are particularly affected by psychiatric diseases with developmental manifestations such as schizophrenia and autism. Differentiation protocols of human pluripotent stem cells (PSC) into cortical neurons have been achieved, opening the way to in vitro modeling of neuropsychiatric diseases. However, these protocols commonly result in the asynchronous production of neurons typical for the different layers of the cortex within an extended period of culture, thus precluding the analysis of specific subtypes of neurons in a standardized manner. Addressing this issue, we have successfully captured a stable population of self-renewing late cortical progenitors (LCPs) that synchronously and massively differentiate into glutamatergic cortical neurons of the upper layers. The short time course of differentiation into neurons of these progenitors has made them amenable to high-throughput assays. This has allowed us to analyze the capability of LCPs at differentiating into post mitotic neurons as well as extending and branching neurites in response to a collection of selected bioactive molecules. LCPs and cortical neurons of the upper layers were successfully produced from patient-derived-induced PSC, indicating that this system enables functional studies of individual-specific cortical neurons ex vivo for disease modeling and therapeutic purposes.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by a dramatic appearance of premature aging. HGPS is due to a single-base substitution in exon 11 of the LMNA gene (c.1824C>T) leading to the production of a toxic form of the prelamin A protein called progerin. Because farnesylation process had been shown to control progerin toxicity, in this study we have developed a screening method permitting to identify new pharmacological inhibitors of farnesylation. For this, we have used the unique potential of pluripotent stem cells to have access to an unlimited and relevant biological resource and test 21 608 small molecules. This study identified several compounds, called monoaminopyrimidines, which target two key enzymes of the farnesylation process, farnesyl pyrophosphate synthase and farnesyl transferase, and rescue in vitro phenotypes associated with HGPS. Our results opens up new therapeutic possibilities for the treatment of HGPS by identifying a new family of protein farnesylation inhibitors, and which may also be applicable to cancers and diseases associated with mutations that involve farnesylated proteins.
Translation of pharmacological results from in vitro cell testing to clinical trials is challenging. One of the causes that may underlie these discrepant results is the lack of the phenotypic or species-specific relevance of the tested cells; today, this lack of relevance may be reduced by relying on cells differentiated from human pluripotent stem cells. To analyse the benefits provided by this approach, we chose to focus on Friedreich ataxia, a neurodegenerative condition for which the recent clinical testing of two compounds was not successful. These compounds, namely, resveratrol and nicotinamide, were selected because they had been shown to stimulate the expression of frataxin in fibroblasts and lymphoblastoid cells. Our results indicated that these compounds failed to do so in iPSC-derived neurons generated from two patients with Friedreich ataxia. By comparing the effects of both molecules on different cell types that may be considered to be non-relevant for the disease, such as fibroblasts, or more relevant to the disease, such as neurons differentiated from iPSCs, a differential response was observed; this response suggests the importance of developing more predictive in vitro systems for drug discovery. Our results demonstrate the value of utilizing human iPSCs early in drug discovery to improve translational predictability.
Human pluripotent stem cell-derived neural stem cells offer unprecedented opportunities for producing specific types of neurons for several biomedical applications. However, to achieve it, protocols of production and amplification of human neural stem cells need to be standardized, cost effective, and safe. This means that small molecules should progressively replace the use of media containing cocktails of protein-based growth factors. Here we have conducted a phenotypical screening to identify pathways involved in the regulation of hNSC self-renewal. We analyzed 80 small molecules acting as kinase inhibitors and identified compounds of the 5-isoquinolinesulfonamide family, described as protein kinase A (PKA) and protein kinase G inhibitors, as candidates to support hNSC self-renewal. Investigating the mode of action of these compounds, we found that modulation of PKA activity was central in controlling the choice between self-renewal or terminal neuronal differentiation of hNSC. We finally demonstrated that the pharmacological inhibition of PKA using the small molecule HA1004 was sufficient to support the full derivation, propagation, and long-term maintenance of stable hNSC in absence of any other extrinsic signals. Our results indicated that tuning of PKA activity is a core mechanism regulating hNSC self-renewal and differentiation and delineate the minimal culture media requirement to maintain undifferentiated hNSC in vitro. STEM CELLS 2015;33:3666-3672 SIGNIFICANCE STATEMENTPluripotent stem cells-derived neural stem cells offer unprecedented opportunities for producing human neurons for several biomedical applications. However, defining the minimal requirement to maintain neural stem cells self-renewal in vitro, using small molecules rather than protein based cocktails, is a pre-requisite to fully achieve the potential of these cells. Here, we have used high throughput screening to find small molecules able to replace the prototypical EGF/FGF-2 based cocktail uses to support neural stem cells self-renewal. This screen identified Protein Kinase A inhibitors and allowed us to delineate the minimal culture media requirement to maintain undifferentiated hNSC in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.