[1] A formalism is proposed to represent a broadband spectrum of Gravity Waves (GWs) via the superposition of a large ensemble of statistically independent monochromatic ones. To produce this large ensemble at a reasonable numerical cost, we use the fact that the life cycles of the waves needed to be parameterized in General Circulation Models (GCMs) have time scales that largely exceed the time step of the model. We can therefore launch few waves with characteristics chosen randomly at each time step, and make them having an effect on a longer time scale by applying an AR1 relation between the gravity waves drag at a given time and that at the next time step. The stochastic GW parameterization is applied to a GCM in the tropics, and its additional drag causes a realistic Quasi-Biennial Oscillation (QBO). The more realistic wind structure also results in a better representation of the large scale equatorial waves, like the Rossby Gravity Waves (RGWs) with periods around 4-5 day. Citation: Lott, F., L. Guez, and P. Maury (2012), A stochastic parameterization of non-orographic gravity waves: Formalism and impact on the equatorial stratosphere, Geophys.
Sudden stratospheric warming (SSW) events have received increased attention since their impacts on the troposphere became evident recently. Studies of SSW usually focus on polar stratospheric conditions; however, understanding the global impact of these events requires studying them from a wider perspective. Case studies are used to clarify the characteristics of the stratosphere-troposphere dynamical coupling, and the meridional extent of the phenomena associated with SSW. Results show that differences in the recovery phase can be used to classify SSW events into two types. The first is the absorbing type of SSW, which has a longer timescale as well as a larger meridional extent due to the persistent incoming planetary waves from the troposphere. The absorbing type of SSW is related to the annular mode on the surface through poleward and downward migration of the deceleration region of the polar night jet. The other is the reflecting type. This is characterized by a quick termination of the warming episode due to the reflection of planetary waves in the stratosphere, which leads to an amplification of tropospheric planetary waves inducing strong westerlies over the North Atlantic and blocking over the North Pacific sector. Differences in the tropospheric impact of the absorbing and reflecting SSWs are also confirmed with composite analysis of 22 major SSWs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.