BackgroundEnvironmental health impact assessments often have to deal with substantial uncertainties. Typically, the knowledge-base is limited with incomplete, or inconsistent evidence and missing or ambiguous data. Consulting experts can help to identify and address uncertainties.MethodsFormal expert elicitation is a structured approach to systematically consult experts on uncertain issues. It is most often used to quantify ranges for poorly known parameters, but may also be useful to further develop qualitative issues such as definitions, assumptions or conceptual (causal) models. A thorough preparation and systematic design and execution of an expert elicitation process may increase the validity of its outcomes and transparency and trustworthiness of its conclusions. Various expert elicitation protocols and methods exist. However, these are often not universally applicable, and need customization to suite the needs of a specific study. In this paper, we set out to develop a widely applicable method for the use of expert elicitation in environmental health impact assessment.ResultsWe present a practical yet flexible seven step procedure towards organising expert elicitation in the context of environmental health impact assessment, based on existing protocols. We describe how customization for specific applications is always necessary. In particular, three issues affect the choice of methods for a particular application: the types of uncertainties considered, the intended use of the elicited information, and the available resources. We outline how these three considerations guide choices regarding the design and execution of expert elicitation. We present signposts to sources where the issues are discussed in more depth to give the newcomer the insights needed to make the protocol work. The seven step procedure is illustrated using examples from earlier published elicitations in the field of environmental health research.ConclusionsWe conclude that, despite some known criticism on its validity, formal expert elicitation can support environmental health research in various ways. Its main purpose is to provide a temporary summary of the limited available knowledge, which can serve as a provisional basis for policy until further research has been carried out.
The overall medium to high likelihood rating of causality of health effects of UFP exposure and the high likelihood rating of at least one of the proposed causal mechanisms explaining associations between UFP and cardiac events, stresses the importance of considering UFP in future health impact assessments of (transport-related) air pollution, and the need for further research on UFP exposure and health effects.
Toxicological studies have provided evidence of the toxicity of ultrafine particles (UFP), but epidemiological evidence for health effects of ultrafines is limited. No quantitative summary currently exists of concentration-response functions for ultrafine particles that can be used in health impact assessment. The goal was to specify concentration-response functions for ultrafine particles in urban air including their uncertainty through an expert panel elicitation. Eleven European experts from the disciplines of epidemiology, toxicology, and clinical medicine selected using a systematic peer-nomination procedure participated. Using individual ratings supplemented with group discussion, probability distributions of effect estimates were obtained for all-cause mortality and cardiovascular and respiratory hospital admissions. Experts judged the small database of epidemiological studies supplemented with experimental studies sufficient to quantify effects of UFP on all-cause mortality and to a lesser extent hospital admissions. Substantial differences in the estimated UFP health effect and its uncertainty were found between experts. The lack of studies on long-term exposure to UFP was rated as the most important source of uncertainty. Effects on hospital admissions were considered more uncertain. This expert elicitation provides the first quantitative evaluation of estimates of concentration response functions between urban air ultrafine particles and all-cause mortality and hospital admissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.