The interplay between autophagy and intracellular pathogens is intricate as autophagy is an essential cellular response to fight against infections, whereas numerous microbes have developed strategies to escape this process or even exploit it to their own benefit. The fine tuned timing and/or selective molecular pathways involved in the induction of autophagy upon infections could be the cornerstone allowing cells to either control intracellular pathogens, or be invaded by them. We report here that measles virus infection induces successive autophagy signallings in permissive cells, via distinct and uncoupled molecular pathways. Immediately upon infection, attenuated measles virus induces a first transient wave of autophagy, via a pathway involving its cellular receptor CD46 and the scaffold protein GOPC. Soon after infection, a new autophagy signalling is initiated which requires viral replication and the expression of the non-structural measles virus protein C. Strikingly, this second autophagy signalling can be sustained overtime within infected cells, independently of the expression of C, but via a third autophagy input resulting from cell-cell fusion and the formation of syncytia. Whereas this sustained autophagy signalling leads to the autophagy degradation of cellular contents, viral proteins escape from degradation. Furthermore, this autophagy flux is ultimately exploited by measles virus to limit the death of infected cells and to improve viral particle formation. Whereas CD150 dependent virulent strains of measles virus are unable to induce the early CD46/GOPC dependent autophagy wave, they induce and exploit the late and sustained autophagy. Overall, our work describes distinct molecular pathways for an induction of self-beneficial sustained autophagy by measles virus.
Xenophagy, an essential anti-microbial cell-autonomous mechanism, relies on the ability of the autophagic process to selectively entrap intracellular pathogens within autophagosomes to degrade them in autolysosomes. This selective targeting is carried out by specialized autophagy receptors, such as NDP52, but it is unknown whether the fusion of pathogen-containing autophagosomes with lysosomes is also regulated by pathogen-specific cellular factors. Here, we show that NDP52 also promotes the maturation of autophagosomes via its interaction with LC3A, LC3B, and/or GABARAPL2 through a distinct LC3-interacting region, and with MYOSIN VI. During Salmonella Typhimurium infection, the regulatory function of NDP52 in autophagosome maturation is complementary but independent of its function in pathogen targeting to autophagosomes, which relies on the interaction with LC3C. Thus, complete xenophagy is selectively regulated by a single autophagy receptor, which initially orchestrates bacteria targeting to autophagosomes and subsequently ensures pathogen degradation by regulating pathogen-containing autophagosome maturation.
Autophagy is a potent cell autonomous defense mechanism that engages the lysosomal pathway to fight intracellular pathogens. Several autophagy receptors can recognize invading pathogens in order to target them towards autophagy for their degradation after the fusion of pathogen-containing autophagosomes with lysosomes. However, numerous intracellular pathogens can avoid or exploit autophagy, among which is measles virus (MeV). This virus induces a complete autophagy flux, which is required to improve viral replication. We therefore asked how measles virus interferes with autophagy receptors during the course of infection. We report that in addition to NDP52/CALCOCO2 and OPTINEURIN/OPTN, another autophagy receptor, namely T6BP/TAXIBP1, also regulates the maturation of autophagosomes by promoting their fusion with lysosomes, independently of any infection. Surprisingly, only two of these receptors, NDP52 and T6BP, impacted measles virus replication, although independently, and possibly through physical interaction with MeV proteins. Thus, our results suggest that a restricted set of autophagosomes is selectively exploited by measles virus to replicate in the course of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.