Thermodynamic properties and correlation functions for the pure liquid 1,1,3,3-tetramethylurea (TMU) and its aqueous solution were obtained by Monte Carlo simulation in the isothermic and isobaric (NPT) ensemble at 25 ¡C and 1.0 atm. An eight site potential model combining Lennard-Jones plus coulombic functions was developed to calculate intermolecular interaction between TMU molecules. In this model the methyl groups are represented by a united atom approach. The partial charges needed for Coulomb interactions and the geometry of the TMU molecule were calculated at the HF level using a 6-31g* basis set with the CHELPG formalism. The parameters needed for the Lennard-Jones potential functions were optimised to reproduce experimental values for the density and enthalpy of vaporisation of the pure liquid at 298 K and 1.0 atm. The results obtained for density, enthalpy of vaporisation and other thermodynamic properties for the pure liquid TMU are in good agreement with experimental data. Radial distribution functions (rdf) obtained for liquid TMU are broad indicating a low degree of molecular organisation. DipoleÈdipole correlation shows a preference for anti-parallel molecular orientation at short distances. Therefore, the present results are consistent with experimental data indicating the formation of dimers due to dipoleÈdipole interaction. A further test for the potential model was also provided by studying the hydration of TMU on TIP4P water. Potential functions for waterÈTMU intermolecular interaction were obtained by standard combining rules. The value obtained for the free energy of hydration using statistical perturbation theory was *G \ [16.82 kJ mol~1, to be compared with the value *G \ [56.48 kJ mol~1 obtained for urea. Radial distribution functions for waterÈTMU interaction show features indicating hydrogen bonding between the TMU oxygen site and hydrogen of water. Compared to pure water, our results shows that the waterÈTMU hydrogen bonding is more stable. The results also show that in dilute TMUÈwater solution the inÑuence of TMU on the energetics of waterÈwater hydrogen bonding is negligible. Contrasting with gas phase results for the TMUÈwater dimer the present results do not indicate the formation of hydrogen bonding interaction with the nitrogen site of TMU in aqueous solution. This Ðnding is in agreement with previous hydration studies of dimethylformamide and also with the hydrophobic behaviour of TMU observed in experiments. DipoleÈdipole correlation results obtained for TMU and water molecules in the waterÈTMU solution exhibit signiÐcant di †erences when compared to the ones for the pure liquids.
Recebido em 9/12/03; aceito em 1/9/04; publicado na web em 12/11/04 STRUCTURE AND PROPERTIES OF ELLIPTICINES. The ellipticines constitute a broad class of molecules with antitumor activity. In the present work we analyzed the structure and properties of a series of ellipticine derivatives in the gas phase and in solution using quantum mechanical and Monte Carlo methods. The results showed a good correlation between the solvation energies in water obtained with the continuum model and the Monte Carlo simulation. Molecular descriptors were considered in the development of QSAR models using the DNA association constant (log K app ) as biological data. The results showed that the DNA binding is dominated by electronic parameters, with small contributions from the molecular volume and area.Keywords: ellipticine; ab initio calculation; QSAR. INTRODUÇÃOElipticinas (Figura 1) constituem uma ampla classe de compostos com atividade antitumoral 1 . Além da alta citotoxicidade em célu-las cancerosas, estas moléculas são especialmente interessantes do ponto de vista clínico devido aos efeitos colaterais reduzidos 2 . O modo de ação das elipticinas tem sido amplamente estudado, entretanto, conclusões definitivas sobre os aspectos moleculares relevantes para a ação biológica não foram ainda relatadas 3 . O núcleo molecular básico das elipticinas é constituído de um grupamento carbazol ligado a um anel piridina, propiciando a deslocalização eletrônica sobre toda a molécula. Esta estrutura relativamente simples tem permitido a síntese de mais de 70 análogos distintos 3 , com as principais modificações sendo a inclusão de um grupo hidroxila nas posições C 9 e C 7 , e alquilação das posições N 2 , N 6 e C 1 (ver Figura 1). Mais recentemente 4 , novas elipticinas substituídas em C 9 foram sintetizadas visando obter derivados com citotoxicidade seletiva.No presente trabalho, a estrutura e as propriedades moleculares de algumas elipticinas foram determinadas através de cálculos ab initio em fase gasosa. As energias de solvatação foram calculadas utilizando modelos contínuos de solvatação e simulação de Monte Carlo. A estrutura do solvente ao redor de alguns sítios das molécu-las foi analisada visando identificar características do processo de solvatação, específicas para os diferentes análogos. Na parte final do trabalho, modelos quantitativos de relação estrutura-atividade (QSAR) foram construídos e analisados. METODOLOGIA DE CÁLCULOO conjunto de moléculas estudadas no presente trabalho é apresentado na Tabela 1. Estes análogos foram selecionados de acordo com a disponibilidade de parâmetros biológicos quantitativos 3 e características estruturais dissimilares dentro desta classe de moléculas. Para cada composto descrito na Tabela 1, a geometria foi completamente otimizada no nível HF/6-31G(d) e caracterizada como mínimo verdadeiro na Superfície de Energia Potencial (PES) através do cálcu-lo de freqüências harmônicas. Cargas atômicas ChelpG (Q), momento de dipolo elétrico (µ) e energias dos orbitais moleculares de fronteira (HOMO e ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.