The Finite Element Method FEM , although widely used as an approximate solution method, has some limitations when applied in dynamic analysis. As the loads excite the high frequency and modes, the method may lose precision and accuracy. To improve the representation of these highfrequency modes, we can use the Generalized Finite Element Method GFEM to enrich the approach space with appropriate functions according to the problem under study. However, there are still some aspects that limit the GFEM applicability in problems of dynamics of structures, as numerical instability associated with the process of enrichment. Due to numerical instability, the GFEM may lose precision and even result in numerically singular matrices. In this context, this paper presents the application of two proposals to minimize the problem of sensitivity of the GFEM: an adaptation of the Stable Generalized Finite Element Method for dynamic analysis and a stabilization strategy based on preconditioning of enrichment. Examples of one-dimensional modal and transient analysis are presented as bars with cross section area variation. Numerical results obtained are discussed analyzing the effects of the adoption of preconditioning techniques on the approximation and the stability of GFEM in dynamic analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.