, and control (n ؍ 25). The participants underwent anthropometric and cirtometric measurements associated with maximal respiratory pressures. We analyzed data using descriptive (mean and SD) and inferential statistics (1-way analysis of variance, Student t test, and Scheffé post hoc) with a level of significance of 5% (P < .05) and a CI of 95%. RESULTS: Although the anthropometric and cirtometric variables indicated similarity of values between groups (P > .05), the maximal inspiratory and expiratory pressures were considerably lower in the subjects with PD and AD (P < .01). CONCLUSIONS: The control of the anthropometric and cirtometric variables of the subjects indicates that RMS is affected by the aging process, and its decline increases in neurodegenerative conditions. This fact represents a serious risk for the development of atelectasis and other pneumo-functional complications, which must be considered in proposing of future therapies.
The study investigated the influence of β-alanine supplementation during a high-intensity interval training (HIIT) program on repeated sprint ability (RSA) performance. This study was randomized, double-blinded, and placebo controlled. Eighteen men performed an incremental running test until exhaustion (TINC) at baseline and followed by 4-wk HIIT (10 × 1-min runs 90% maximal TINC velocity [1-min recovery]). Then, participants were randomized into two groups and performed a 6-wk HIIT associated with supplementation of 6.4 g/day of β-alanine (Gβ) or dextrose (placebo group; GP). Pre- and post-6-wk HIIT + supplementation, participants performed the following tests: 1) TINC; 2) supramaximal running test; and 3) 2 × 6 × 35-m sprints (RSA). Before and immediately after RSA, neuromuscular function was assessed by vertical jumps, maximal isometric voluntary contractions of knee extension, and neuromuscular electrical stimulations. Muscle biopsies were performed to determine muscle carnosine content, muscle buffering capacity in vitro (βmin vitro), and content of phosphofructokinase (PFK), monocarboxylate transporter 4 (MCT4), and hypoxia-inducible factor-1α (HIF-1α). Both groups showed a significant time effect for maximal oxygen uptake (Gβ: 6.2 ± 3.6% and GP: 6.5 ± 4.2%; P > 0.01); only Gβ showed a time effect for total (−3.0 ± 2.0%; P = 0.001) and best (−3.3 ± 3.0%; P = 0.03) RSA times. A group-by-time interaction was shown after HIIT + Supplementation for muscle carnosine (Gβ: 34.4 ± 2.3 mmol·kg−1·dm−1 and GP: 20.7 ± 3.0 mmol·kg−1·dm−1; P = 0.003) and neuromuscular voluntary activation after RSA (Gβ: 87.2 ± 3.3% and GP: 78.9 ± 12.4%; P = 0.02). No time effect or group-by-time interaction was shown for supramaximal running test performance, βm, and content of PFK, MCT4, and HIF-1α. In summary, β-alanine supplementation during HIIT increased muscle carnosine and attenuated neuromuscular fatigue, which may contribute to an enhancement of RSA performance. NEW & NOTEWORTHY β-Alanine supplementation during a high-intensity interval training program increased repeated sprint performance. The improvement of muscle carnosine content induced by β-alanine supplementation may have contributed to an attenuation of central fatigue during repeated sprint. Overall, β-alanine supplementation may be a useful dietary intervention to prevent fatigue.
Vitamin B12 is essential in the homocysteine, mitochondrial, muscle and hematopoietic metabolisms, and its effects on exercise tolerance and kinetics adjustments of oxygen consumption (V'O) in rest-to-exercise transition in COPD patients are unknown. This randomized, double-blind, controlled study aimed to verify a possible interaction between vitamin B12 supplementation and these outcomes. After recruiting 69 patients, 35 subjects with moderate-to-severe COPD were eligible and 32 patients concluded the study, divided into four groups (n = 8 for each group): 1. rehabilitation group; 2. rehabilitation plus B12 group; 3. B12 group; and 4. placebo group. The primary endpoint was cycle ergometry endurance before and after 8 weeks and the secondary endpoints were oxygen uptake kinetics parameters (time constant). The prevalence of vitamin B12 deficiency was high (34.4%) and there was a statistically significant interaction (p < 0.05), favoring a global effect of supplementation on exercise tolerance in the supplemented groups compared to the non-supplemented groups, even after adjusting for confounding variables (p < 0.05). The same was not found for the kinetics adjustment variables (τV'O and V'O, p > 0.05 for both). Supplementation with vitamin B12 appears to lead to discrete positive effects on exercise tolerance in groups of subjects with more advanced COPD and further studies are needed to establish indications for long-term supplementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.