Multinuclear ((1)H, (13)C and (27)Al) magnetic resonance spectroscopy (1D and 2D), DFT calculations and fluorescence have been used to study the complexation of 8-hydroxyquinoline-5-sulfonate (8-HQS) with Al(III). The study combines the high sensitivity of luminescence techniques, the selectivity of multinuclear NMR spectroscopy with the structural details accessible through DFT calculations, and aims to provide a detailed understanding of the complexation between the Al(3+) ion and 8-HQS. A full speciation study has been performed and over the concentration region studied, the Al(3+) ion forms complexes with 8-HQS in an aqueous solution in the pH range 2-6. At higher pH, the extensive hydrolysis of the metal limits complexation. Using Job's method, three complexes were detected, with 1 : 1, 1 : 2 and 1 : 3 (metal : ligand) stoichiometries. These results are in agreement with those previously reported using potentiometric and electrochemical techniques. The geometries of the complexes are proposed based on the combination of NMR results with optimized DFT calculations. All the complexes in aqueous solutions at 25 °C are mononuclear species, and have an approximately octahedral geometry with the metal coordinated to one molecule of 8-HQS and four molecules of water (1 : 1 complex), two molecules of 8-HQS and two molecules of water mutually cis (1 : 2 complex), and to three molecules of 8-HQS in non-symmetrical arrangement (mer-isomer), for the 1 : 3 (metal : ligand) complex. On binding to Al(III), 8-HQS shows a more marked fluorescence than the weakly fluorescent free ligand. In addition, as previously noted, there are marked changes in the absorption spectra, which support the use of 8-HQS as a sensitive optical sensor to detect Al(3+) metal ions in surface waters and biological fluids. These complexes also show potential for applications in organic light emitting diodes (OLEDs).
We extend the scope of a recent method for superimposing two molecules ( J. Chem. Phys. 2009, 131, 124126-1-124126-10 ) to include the identification of chiral structures. This methodology is tested by applying it to several organic molecules and water clusters that were subjected to geometry optimization. The accuracy of four simpler, non-superimposing approaches is then analyzed by comparing pairs of structures for argon and water clusters. The structures considered in this work were obtained by a Markovian walk in the coordinate space. First, a random geometry is generated, and then, the iterative application of a mutation operator ensures the creation of increasingly dissimilar structures. The discriminating power of the non-superimposing approaches is tested by comparing the corresponding dissimilarity measures with the root-mean-square distance obtained from the superimposing method. Finally, we showcase the application of those methods to characterize the diversity of solutions in global geometry optimization by evolutionary algorithms.
Relationships have been obtained between intermonomer torsional angle and NMR chemical shifts ((1)H and (13)C) for isolated chains of two of the most important poly(9,9-dialkylfluorenes), poly[9,9-bis(2-ethylhexyl)fluorene-2,7-diyl] (PF2/6) and the copolymer poly(9,9-dioctylfluorene-co-[2,1,3]benzothiadiazole-4,7-diyl) (F8BT), using DFT calculations. The correlations provide a model for NMR spectral data interpretation and the basis for analysis of conformational changes in poly(9,9-dialkylfluorene-2,7-diyl)s. The correlations obtained for PF2/6 indicate that the (13)C chemical shifts of the aromatic carbons close to the intermonomer connection (C1, C2, and C3) have minimum values at planar conformations (0 degrees and 180 degrees ) and maximum values at 90 degrees conformations. In contrast, the (1)H chemical shifts of the corresponding aromatic ortho protons (Ha and Hb) are greatest for planar conformations, and the minimum values are seen for 90 degrees conformations. For the F8BT copolymer, similar relationships are observed for the (1)H (Ha, Hb, and Hc) aromatic shifts. Considering the aromatic carbons of F8BT, the behavior of C2, C4, C5, and C6 is similar to that found for the PF2/6 carbons. However, C1 and C3 of the fluorene moiety behave differently with varying torsion angle. These are in close proximity to the fluorene-benzothiadiazole linkage and are markedly affected by interactions with the thiadiazole unit such that delta(C1) is a maximum for 180 degrees and a minimum for 0 degrees , whereas delta(C3) is a maximum for 0 degrees and minimum for 180 degrees. We have studied the (1)H and (13)C spectra of the two polymers at temperatures between -50 degrees C and +65 degrees C. The observed changes to higher or lower frequency in the aromatic resonances were analyzed using these theoretical relationships. Fluorescence studies on PF2/6 in chloroform solution suggest there are no significant interchain interactions under these conditions. This is supported by variable-temperature NMR results. Polymer-solvent and polymer intramolecular interactions were found to be present and influence all of the alkylic and one of the aromatic (1)H resonances (Hb). The detailed attribution of the (1)H and (13)C NMR spectra of the two polymers was made prior to the establishment of the relationships between torsion angle and NMR chemical shifts. This was carried out through DFT calculation of the (1)H and (13)C shielding constants of the monomers, coupled with distortionless enhancement by polarization transfer and heteronuclear correlation NMR spectra. Several DFT levels of calculation were tested for both optimization of structures and shielding constants calculation. The B3LYP/6-31G(d,p) method was found to perform well in both cases.
Although there is a long history behind the idea of chemical structure, this is a key concept that continues to challenge chemists. Chemical structure is fundamental to understanding most of the properties of matter and its knowledge for complex systems requires the use of state-of-the-art techniques, either experimental or theoretical. From the theoretical view point, one needs to establish the interaction potential among the atoms or molecules of the system, which contains all the information regarding the energy landscape, and employ optimization algorithms to discover the relevant stationary points. In particular, global optimization methods are of major importance to search for the low-energy structures of molecular aggregates. We review the application of global optimization techniques to several molecular clusters; some new results are also reported. Emphasis is given to evolutionary algorithms and their application in the study of the microsolvation of alkali-metal and Ca ions with various types of solvents.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Diphenyldibenzofulvene derivatives consisting of an aromatic tertbutyl-substituted fluorene stator and different rotors consisting of nonsubstituted phenyl groups (3,6-dtb-DPBF) and monomethyl-substituted (3,6-dtb-DPBFMe) and dimethyl-substituted [3,6-dtb-DPBF(Me) 2 ] forms have been synthesized and found to display aggregation-induced emission (AIE). The incremental number of substituents from 3,6-dtb-DPBF to the 3,6-dtb-DPBFMe and 3,6-dtb-DPBF-(Me) 2 derivatives promotes significant changes, from a good solvent (acetonitrile, MeCN), where it is very poorly emissive, to thin films or aggregates, in MeCN/ water mixtures, and a huge increment in fluorescence emission, which is found to be dependent on the water fraction, f w . The characteristics (size and distribution) of the aggregates were further corroborated with dynamic light scattering measurements. From time-resolved fluorescence experiments (TCSPC and FLIM), the increase in the contribution of the longer decay component is linked to the emission of the aggregate (AIE effect). To assist in the elucidation of the aggregation process at a molecular level, the data were complemented with computational studies [time-dependent density functional theory (TDDFT) and molecular dynamics (MD) simulations]. From MD, the octamer properly addresses the properties of the aggregate. As determined by the X-ray data, the crystal structure of a two-unit special disposition is identical to the geometry of the most stable structure obtained from MD and TDDFT calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.