A system of nearest neighbors Kuramoto-like coupled oscillators placed in a ring is studied above the critical synchronization transition. We find a richness of solutions when the coupling increases, which exists only within a solvability region (SR). We also find that the solutions possess different characteristics, depending on the section of the boundary of the SR where they appear. We study the birth of these solutions and how they evolve when the coupling strength increases, and determine the diagram of solutions in phase space.
An explanation for the acquisition of word-object mappings is the associative learning in a crosssituational scenario. Here we present analytical results of the performance of a simple associative learning algorithm for acquiring a one-to-one mapping between N objects and N words based solely on the co-occurrence between objects and words. In particular, a learning trial in our learning scenario consists of the presentation of C + 1 < N objects together with a target word, which refers to one of the objects in the context. We find that the learning times are distributed exponentially and the learning rates are given by ln N (N −1) C+(N −1) 2 in the case the N target words are sampled randomly and by 1 N ln N −1 C in the case they follow a deterministic presentation sequence. This learning performance is much superior to those exhibited by humans and more realistic learning algorithms in cross-situational experiments. We show that introduction of discrimination limitations using Weber's law and forgetting reduce the performance of the associative algorithm to the human level.
Animals do not move all the time but alternate the period of actual movement (foraging) with periods of rest (e.g. eating or sleeping). Although the existence of rest times is widely acknowledged in the literature and has even become a focus of increased attention recently, the theoretical approaches to describe animal movement by calculating the dispersal kernel and/or the mean squared displacement (MSD) rarely take rests into account. In this study, we aim to bridge this gap. We consider a composite stochastic process where the periods of active dispersal or ‘bouts’ (described by a certain baseline probability density function (pdf) of animal dispersal) alternate with periods of immobility. For this process, we derive a general equation that determines the pdf of this composite movement. The equation is analysed in detail in two special but important cases such as the standard Brownian motion described by a Gaussian kernel and the Levy flight described by a Cauchy distribution. For the Brownian motion, we show that in the large-time asymptotics the effect of rests results in a rescaling of the diffusion coefficient. The movement occurs as a subdiffusive transition between the two diffusive asymptotics. Interestingly, the Levy flight case shows similar properties, which indicates a certain universality of our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.