In this work, we study the ensemble size influence on an adaptive ensemble-based methodology for history matching of petroleum reservoirs. The assimilation scheme used is an adaptive ensemble smoother with multiple data assimilation (ES-MDA) in which both the total number of assimilations and the inflation factor of each iteration are defined automatically by the algorithm. This fact leads to the assumption that the predefined algorithm parameters may have influence in the total number of assimilations and the inflation factors. One main parameter that can be investigated is the number of ensemble members used in the assimilation, also called ensemble size. The ensemble size influence was analyzed by applying the adaptive ES-MDA in a synthetic large-scale reservoir model. As a result of the investigation, the ensemble size showed influence on the reduction in the uncertainty of the posterior models, but it did not show any influence on the total number of assimilations and on the inflation factor selection.
Numerical simulation is a tool for reservoir management, used to realize the prediction of a field during its productive life. Because the uncertainty parameters, a discrepancy between the real and simulated values may occur, being necessary the validation of the model, which is made through the history matching. In this work, the methodology of this matching was performed in two steps: re-evaluating 1) the uncertain geological petrophysical properties using random search to select the best images; 2) the productivity index of each well using evolutionary algorithm. Using the images found in the first step of the methodology, the second step is performed, with the parameter selected to modify the productivity of the wells being the skin factor. This methodology was applied in the UNISIM-I-H benchmark model to validate it. The fluid model of the field was black-oil with the oil density equal to 28 ºAPI and the data consisting of 11 years of production of 14 producers and 11 injectors. In conclusion, considering the skin factor as uncertain parameter with the objective of altering the wells behavior resulted in improvements in the matching process. This can be observed through of reduction in the objective function from 23 to 7 percent.
In reservoir engineering, history matching is the technique that reviews the uncertain parameters of a reservoir simulation model in order to obtain a response according to the observed production data. Reservoir properties have uncertainties due to their indirect acquisition methods, that results in discrepancies between observed data and reservoir simulator response. A history matching method is the Ensemble Smoother with Multiple Data assimilation (ES-MDA), where an ensemble of models is used to quantify the parameters uncertainties. In ES-MDA, the number of iterations must be defined previously the application by the user, being a determinant parameter for a good quality matching. One way to handle this, is by implementing adaptive methodologies when the algorithm keeps iterating until it reaches good matchings. Also, in large-scale reservoir models it is necessary to apply the localization technique, in order to mitigate spurious correlations and high uncertainty reduction of posterior models. The main objective of this dissertation is to evaluate two main parameters of history matching when using an adaptive ES-MDA: localization and ensemble size, verifying the impact of these parameters in the adaptive scheme. The adaptive ES-MDA used in this work defines the number of iterations and the inflation factors automatically and distance-based Kalman gain localization was used to evaluate the localization influence. The parameters influence was analyzed by applying the methodology in the benchmark UNISIM-I-H: a synthetic large-scale reservoir model based on an offshore Brazilian field. The experiments presented considerable reduction of the objective function for all cases, showing the ability of the adaptive methodology of keep iterating until a desirable overcome is obtained. About the parameters evaluated, a relationship between the localization and the required number of iterations to complete the adaptive algorithm was verified, and this influence has not been observed as function of the ensemble size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.