Boyer, Kenigsberg, and Mor [Phys.Rev.Lett.99, 140501(2007)] proposed a novel idea of semi-quantum key distribution where a key can be securely distributed between Alice who can perform any quantum operation and Bob who is classical. Extending the idea of "semiquantum" to other tasks of quantum information processing is of interest and worth considering. In this article, we consider the issue of semi-quantum secret sharing where a quantum participant Alice can share a secret key with two classical participants Bobs. After analyzing the existing protocol, we propose a new protocol of semi-quantum secret sharing. Our protocol is more realistic, since it utilizes product states instead of entangled states. We prove that any attempt of an adversary to obtain information necessarily induces some errors that the legitimate users could notice.
In the existing semiquantum key distribution (SQKD) protocols, the both parties must measure qubits in some bases. In this paper, we show that the classical party's measurement capability is not necessary by constructing an SQKD protocol without invoking the classical Alice's measurement capability. In particular, we prove that the proposed SQKD protocol is completely robust against joint attacks. Compared with the existing SQKD protocols, the number of the quantum states sent by Alice and Bob is decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.