Water managers in the western United States (U.S.) rely on longterm forecasts of temperature and precipitation to prepare for droughts and other wet weather extremes. To improve the accuracy of these longterm forecasts, the U.S. Bureau of Reclamation and the National Oceanic and Atmospheric Administration (NOAA) launched the Subseasonal Climate Forecast Rodeo, a year-long real-time forecasting challenge in which participants aimed to skillfully predict temperature and precipitation in the western U.S. two to four weeks and four to six weeks in advance. Here we present and evaluate our machine learning approach to the Rodeo and release our SubseasonalRodeo dataset, collected to train and evaluate our forecasting system.Our system is an ensemble of two nonlinear regression models. The first integrates the diverse collection of meteorological measurements and dynamic model forecasts in the SubseasonalRodeo dataset and prunes irrelevant predictors using a customized multitask feature selection procedure. The second uses only historical measurements of the target variable (temperature or precipitation) and introduces multitask nearest neighbor features into a weighted local linear regression. Each model alone is significantly more accurate than the debiased operational U.S. Climate Forecasting System (CFSv2), and our ensemble skill exceeds that of the top Rodeo competitor for each target variable and forecast horizon. Moreover, over 2011-2018, an ensemble of our regression models and debiased CFSv2 improves debiased CFSv2 skill by 40-50% for temperature and 129-169% for precipitation. We hope that both our dataset and our methods will help to advance the state of the art in subseasonal forecasting.
The discipline of seasonal climate prediction began as an exercise in simple statistical techniques. However, today the large government forecast centers almost exclusively rely on complex fully coupled dynamical forecast systems for their subseasonal to seasonal (S2S) predictions while statistical techniques are mostly neglected and those techniques still in use have not been updated in decades. In this Opinion Article, we argue that new statistical techniques mostly developed outside the field of climate science, collectively referred to as machine learning, can be adopted by climate forecasters to increase the accuracy of S2S predictions. We present an example of where unsupervised learning demonstrates higher accuracy in a seasonal prediction than the state-of-the-art dynamical systems. We also summarize some relevant machine learning methods that are most applicable to climate prediction. Finally, we show by comparing real-time dynamical model forecasts with observations from winter 2017/2018 that dynamical model forecasts are almost entirely insensitive to polar vortex (PV) variability and the impact on sensible weather. Instead, statistical forecasts more accurately predicted the resultant sensible weather from a mid-winter PV disruption than the dynamical forecasts. The important implication from the poor dynamical forecasts is that if Arctic change influences mid-latitude weather through PV variability, then the ability of dynamical models to demonstrate the existence of such a pathway is compromised. We conclude by suggesting that S2S prediction will be most beneficial to the public by incorporating mixed or a hybrid of dynamical forecasts and updated statistical techniques such as machine learning. This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models K E Y W O R D S climate prediction, machine learning, polar vortex, unsupervised learning
<p>Improving our ability to forecast the weather and climate is of interest to all sectors of the economy and government agencies from the local to the national level. In fact, weather forecasts 0-10 days ahead and climate forecasts seasons to decades ahead are currently used operationally in decision-making, and the accuracy and reliability of these forecasts has improved consistently in recent decades. However, many critical applications require subseasonal forecasts with lead times in between these two timescales. Subseasonal forecasting&#8212;predicting temperature and precipitation 2-6 weeks ahead&#8212;is indeed critical for effective water allocation, wildfire management, and drought and flood mitigation. Yet, accurate forecasts for the subseasonal regime are still lacking due to the chaotic nature of weather.</p><p>While short-term forecasting accuracy is largely sustained by physics-based dynamical models, these deterministic methods have limited subseasonal accuracy due to chaos. Indeed, subseasonal forecasting has long been considered a &#8220;predictability desert&#8221; due to its complex dependence on both local weather and global climate variables. Nevertheless, recent large-scale research efforts have advanced the subseasonal capabilities of operational physics-based models, while parallel efforts have demonstrated the value of machine learning and deep learning methods in improving subseasonal forecasting.</p><p>To counter the systematic errors of dynamical models at longer lead times, we introduce an <em>adaptive bias correction</em> (ABC) method that combines state-of-the-art dynamical forecasts with observations using machine learning. We evaluate our adaptive bias correction method in the contiguous U.S. over the years 2011-2020 and demonstrate consistent improvement over standard meteorological baselines, state-of-the-art learning models, and the leading subseasonal dynamical models, as measured by root mean squared error and uncentered anomaly correlation skill. When applied to the United States&#8217; operational climate forecast system (CFSv2), ABC improves temperature forecasting skill by 20-47% and precipitation forecasting skill by 200-350%. When applied to the leading subseasonal model from the European Centre for Medium-Range Weather Forecasts (ECMWF), ABC improves temperature forecasting skill by 8-38% and precipitation forecasting skill by 40-80%.</p><p>Overall, we find that de-biasing dynamical forecasts with our learned adaptive bias correction method yields an effective and computationally inexpensive strategy for generating improved subseasonal forecasts and building the next generation of subseasonal forecasting benchmarks. To facilitate future subseasonal benchmarking and development, we release our model code through the subseasonal_toolkit Python package and our routinely updated SubseasonalClimateUSA dataset through the subseasonal_data Python package.</p>
Split conformal prediction is a popular tool to obtain predictive intervals from general statistical algorithms, with few assumptions beyond data exchangeability. We show that coverage guarantees from split CP can be extended to dependent processes, such as the class of stationary β-mixing processes, by adding a small coverage penalty. In particular, we show that the empirical coverage bounds for some β-mixing processes match the order of the bounds under exchangeability. The framework introduced also extends to non-stationary processes and to other CP methods, and experiments corroborate our split CP's coverage guarantees under dependent data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.