NATURE GEOSCIENCE | ADVANCE ONLINE PUBLICATION | www.nature.com/naturegeoscience 1 T he Arctic cryosphere is an integral part of Earth's climate system and has undergone unprecedented changes within the past few decades. Rapid warming and sea-ice loss has had significant impacts locally, particularly in late summer and early autumn. September sea ice has declined at a rate of 12.4% per decade since 1979 (ref. 1), so that by summer 2012, nearly half of the areal coverage had disappeared. This decrease in ice extent has been accompanied by an approximately 1.8 m (40%) decrease in mean winter ice thickness since 1980 (ref.2) and a 75-80% loss in volume 3 . Though sea-ice loss has received most of the research and media attention, snow cover in spring and summer has decreased at an even greater rate than sea ice. June snow cover alone has decreased at nearly double the rate of September sea ice 4 . The decrease in spring snow cover has contributed to both the rise in warm season surface temperatures over the Northern Hemisphere extratropical landmasses and the decrease in summer Arctic sea ice 5 . The combined rapid loss of sea ice and snow cover in the spring and summer has played a role in amplifying Arctic warming. However, snow cover and sea-ice trends diverge in the autumn and winter with sea ice decreasing in all months while snow cover has exhibited a neutral to positive trend in autumn and winter 6 . Climate change and Arctic amplificationWhile the global-mean surface temperature has unequivocally risen over the instrumental record 7 , spatial heterogeneity of this warming plays an important role in the resulting climate impacts. In particular, the near-surface of the Northern Hemisphere high latitudes are warming at rates double that of lower latitudes [8][9][10] . This observed The Arctic region has warmed more than twice as fast as the global average -a phenomenon known as Arctic amplification. The rapid Arctic warming has contributed to dramatic melting of Arctic sea ice and spring snow cover, at a pace greater than that simulated by climate models. These profound changes to the Arctic system have coincided with a period of ostensibly more frequent extreme weather events across the Northern Hemisphere mid-latitudes, including severe winters. The possibility of a link between Arctic change and mid-latitude weather has spurred research activities that reveal three potential dynamical pathways linking Arctic amplification to mid-latitude weather: changes in storm tracks, the jet stream, and planetary waves and their associated energy propagation. Through changes in these key atmospheric features, it is possible, in principle, for sea ice and snow cover to jointly influence mid-latitude weather. However, because of incomplete knowledge of how high-latitude climate change influences these phenomena, combined with sparse and short data records, and imperfect models, large uncertainties regarding the magnitude of such an influence remain. We conclude that improved process understanding, sustained and additional...
We develop a theoretical approach to quantify the effect of long-term trends on the expected number of extremes in generic time series, using analytical solutions and Monte Carlo simulations. We apply our method to study the effect of warming trends on heat records. We find that the number of record-breaking events increases approximately in proportion to the ratio of warming trend to short-term standard deviation. Short-term variability thus decreases the number of heat extremes, whereas a climatic warming increases it. For extremes exceeding a predefined threshold, the dependence on the warming trend is highly nonlinear. We further find that the sum of warm plus cold extremes increases with any climate change, whether warming or cooling. We estimate that climatic warming has increased the number of new global-mean temperature records expected in the last decade from 0.1 to 2.8. For July temperature in Moscow, we estimate that the local warming trend has increased the number of records expected in the past decade fivefold, which implies an approximate 80% probability that the 2010 July heat record would not have occurred without climate warming.
The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.