The term ''tipping point'' commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here we introduce the term ''tipping element'' to describe large-scale components of the Earth system that may pass a tipping point. We critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and we assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then we explain how, in principle, early warning systems could be established to detect the proximity of some tipping points.Earth system ͉ tipping points ͉ climate change ͉ large-scale impacts ͉ climate policy
Synthesis of river-monitoring data reveals that the average annual discharge of fresh water from the six largest Eurasian rivers to the Arctic Ocean increased by 7% from 1936 to 1999. The average annual rate of increase was 2.0 ± 0.7 cubic kilometers per year. Consequently, average annual discharge from the six rivers is now about 128 cubic kilometers per year greater than it was when routine measurements of discharge began. Discharge was correlated with changes in both the North Atlantic Oscillation and global mean surface air temperature. The observed large-scale change in freshwater flux has potentially important implications for ocean circulation and climate.
melt fraction will be more gradual, reflecting the gradual increase of water solubility in olivine and orthopyroxene.Our results therefore support the concept that the low-velocity zone may be related to partial melting (1, 2, 6). However, even in the absence of melting, the partitioning of water between olivine and orthopyroxene would strongly depend on depth. The high water solubilities in aluminous orthopyroxene at low pressure and temperature will effectively "dry out" olivine, and this may also contribute to a stiffening of the lithosphere. In any case, however, our results imply that the existence of an asthenosphere-and therefore of plate tectonics as we know it-is possible only in a planet with a water-bearing mantle. Stefan RahmstorfA semi-empirical relation is presented that connects global sea-level rise to global mean surface temperature. It is proposed that, for time scales relevant to anthropogenic warming, the rate of sea-level rise is roughly proportional to the magnitude of warming above the temperatures of the pre-Industrial Age. This holds to good approximation for temperature and sea-level changes during the 20th century, with a proportionality constant of 3.4 millimeters/year per°C. When applied to future warming scenarios of the Intergovernmental Panel on Climate Change, this relationship results in a projected sea-level rise in 2100 of 0.5 to 1.4 meters above the 1990 level. U nderstanding global sea-level changes is a difficult physical problem, because complex mechanisms with different time scales play a role (1), including thermal expansion of water due to the uptake and penetration of heat into the oceans, input of water into the ocean from glaciers and ice sheets, and changed water storage on land. Ice sheets have the largest potential effect, because their complete melting would result in a global sea-level rise of about 70 m. Yet their dynamics are poorly understood, and the key processes that control the response of ice flow to a warming climate are not included in current ice sheet models [for example, meltwater lubrication of the ice sheet bed (2) or increased ice stream flow after the removal of buttressing ice shelves (3)]. Large uncertainties exist even in the projection of thermal expansion, and estimates of the total volume of ice in mountain glaciers and ice caps that are remote from the continental ice sheets are uncertain by a factor of two (4). Finally, there are as yet no published physically based projections of ice loss from glaciers and ice caps fringing Greenland and Antarctica.For this reason, our capability for calculating future sea-level changes in response to a given surface warming scenario with present physicsbased models is very limited, and models are not able to fully reproduce the sea-level rise of recent decades. Rates of sea-level rise calculated with climate and ice sheet models are generally lower than observed rates. Since 1990, observed sea level has followed the uppermost uncertainty limit of the Intergovernmental Panel on Climate Change (IPCC) Th...
Abrupt changes in climate, termed Dansgaard-Oeschger and Heinrich events, have punctuated the last glacial period (approximately 100-10 kyr ago) but not the Holocene (the past 10 kyr). Here we use an intermediate-complexity climate model to investigate the stability of glacial climate, and we find that only one mode of Atlantic Ocean circulation is stable: a cold mode with deep water formation in the Atlantic Ocean south of Iceland. However, a 'warm' circulation mode similar to the present-day Atlantic Ocean is only marginally unstable, and temporary transitions to this warm mode can easily be triggered. This leads to abrupt warm events in the model which share many characteristics of the observed Dansgaard-Oeschger events. For a large freshwater input (such as a large release of icebergs), the model's deep water formation is temporarily switched off, causing no strong cooling in Greenland but warming in Antarctica, as is observed for Heinrich events. Our stability analysis provides an explanation why glacial climate is much more variable than Holocene climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.