Precise Point Positioning (PPP) is a wellknown technique of positioning by Global Navigation Satellite Systems (GNSS) that provides accurate solutions. With the availability of real-time precise orbit and clock products provided by the International GNSS Service (IGS) and by individual analysis centers such as Centre National d'Etudes Spatiales through the IGS Real-Time Project, PPP in real time is achievable. With such orbit and clock products and using dual-frequency receivers, first-order ionospheric effects can be eliminated by the ionospheric-free combination. Concerning the tropospheric delays, the Zenith Hydrostatic Delays can be quite well modeled, although the Zenith Wet Delays (ZWDs) have to be estimated because they cannot be mitigated by, for instance, observable combinations. However, adding ZWD estimates in PPP processing increases the time to achieve accurate positions. In order to reduce this convergence time, we (1) model the behavior of troposphere over France using ZWD estimates at Orphéon GNSS reference network stations and (2) send the modeling parameters to the GNSS users to be introduced as a priori ZWDs, with an appropriate uncertainty. At the user level, float PPP-RTK is achieved; that is, GNSS data are performed in kinematic mode and ambiguities are kept float. The quality of the modeling is assessed by comparison with tropospheric products published by Institut National de l'Information Géographique et Forestière. Finally, the improvements in terms of required time to achieve 10-cm accuracy for the rover position (simulated float PPP-RTK) are quantified and discussed. Results for 68 % quantiles of absolute errors convergence show that gains for GPS-only positioning with ZWDs derived from the assessed tropospheric modeling are about: 1 % (East), 20 % (North), and 5 % (Up). Since ZWD estimation is correlated with satellite geometry, we also investigated the positioning when processing GPS ? GLONASS data, which increases significantly the number of available satellites. The improvements achieved by adding tropospheric corrections in this case are about: 2 % (East), 5 % (North), and 13 % (Up). Finally, a reduction in the number of reference stations by using a sparser network configuration to perform the tropospheric modeling does not degrade the generated tropospheric corrections, and similar performances are achieved.
Air navigation is increasingly dependent on the use of Global Navigation Satellite Systems (GNSS). It allows the determination of the aircraft's position in all phases of the flight and brings many advantages. Although GNSS navigation results in gains, the radio signals from these systems are strongly influenced by the ionospheric environment. It introduces errors that can affect the accuracy, integrity, availability and continuity requirements established by the International Civil Aviation Organization (ICAO). The ionospheric layer has different behaviors depending on the latitude, time of day, season of the year, geomagnetic activity and solar cycle. Since Brazil is located in a region of low latitudes, it experiences a series of unique challenges when compared to regions of mid-latitudes. For this reason, the application of GNSS-based technologies in aviation over the Brazilian territory requires an in-depth assessment of the ionosphere effects. Therefore, the Instituto Nacional de Ciência e Tecnologia (INCT) named GNSS Technology for Supporting Air Navigation was formed in 2017 to better assess the ionosphere impacts and assist government agencies and companies in the development of safe air navigation procedures over Brazil in a near future. This paper presents the most relevant advances achieved so far within this multidisciplinary project that involves Brazilian research centers and universities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.