BackgroundOver the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications.ResultsOptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes.OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms.The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph.ConclusionsThe OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community.Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models.
Several studies have shown that neither the formal representation nor the functional requirements of genome-scale metabolic models (GEMs) are precisely defined. Without a consistent standard, comparability, reproducibility, and interoperability of models across groups and software tools cannot be guaranteed.Here, we present memote (https://github.com/opencobra/memote) an open-source software containing a community-maintained, standardized set of me tabolic mo del te sts. The tests cover a range of aspects from annotations to conceptual integrity and can be extended to include experimental datasets for automatic model validation. In addition to testing a model once, memote can be configured to do so automatically, i.e., while building a GEM. A comprehensive report displays the model's performance parameters, which supports informed model development and facilitates error detection.Memote provides a measure for model quality that is consistent across reconstruction platforms and analysis software and simplifies collaboration within the community by establishing workflows for publicly hosted and version controlled models.A. Richelle: Lilly Innovation Fellowship Award B. García-Jiménez and J.
BackgroundActinobacillus succinogenes is a promising bacterial catalyst for the bioproduction of succinic acid from low-cost raw materials. In this work, a genome-scale metabolic model was reconstructed and used to assess the metabolic capabilities of this microorganism under producing conditions.ResultsThe model, iBP722, was reconstructed based on the functional reannotation of the complete genome sequence of A. succinogenes 130Z and manual inspection of metabolic pathways, covering 1072 enzymatic reactions associated with 722 metabolic genes that involve 713 metabolites. The highly curated model was effective in capturing the growth of A. succinogenes on various carbon sources, as well as the SA production under various growth conditions with fair agreement between experimental and predicted data. Calculated flux distributions under different conditions show that a number of metabolic pathways are affected by the activity of some metabolic enzymes at key nodes in metabolism, including the transport mechanism of carbon sources and the ability to fix carbon dioxide.ConclusionsThe established genome-scale metabolic model can be used for model-driven strain design and medium alteration to improve succinic acid yields.Electronic supplementary materialThe online version of this article (10.1186/s12918-018-0585-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.