This paper presents the process flow optimizations for the 3D stacking of thin silicon dies. This process is developed for the postfabrication 3D integration technique, which can be used by 3D packaging and heterogenous or hybrid integration fabs. Bonding of the thin silicon layers is optimized by reducing the epoxy thickness. Further, a detailed of set experiments were used to characterize the stress in the thin silicon films. Finally, a hybrid process flow is demonstrated for achieving finer interconnect linewidths of 10 μm. The 3D stacking approach is based on the bonding of thin dies followed by SU-8 planarization. Vias are opened in the planarization layer using lithography. The interconnection methodology fills the SU-8 polymer vias with inkjet-printed silver. Printing the interconnect lines using the standard inkjet printer limits the linewidth to ∼100 μm. To address this, a hybrid process is developed to scale the interconnect line widths. Along with interconnects in the multilayer stack, we demonstrate a minimum line width and spacing of 10 μm and a via diameter of 10 μm.
The paper presents fabrication methodologies that integrate silicon components into soft microfluidic devices to perform microbial cell lysis for biological applications. The integration methodology consists of a silicon chip that...
The paper presents fabrication methodologies that integrate silicon components into soft microfluidic devices to perform microbial cell lysis for biological applications. The integration methodology consists of a silicon chip that is fabricated with microstructure arrays and embedded in a microfluidic device, which is driven by piezoelectric actuation to perform cell lysis by physically breaking microbial cell walls via micromechanical impaction. We present different silicon microarray geometries, their fabrication techniques, integration of said microarrays into microfluidic devices, device operation and testing on synthetic microbeads and microbial cells to evaluate their efficacy. The generalized strategy developed for silicon chip integration into soft polymeric devices can serve as an important process step for a new class of hybrid silicon-polymeric devices for future cellular processing applications. The proposed integration methodology can be scalable and integrated as an in-line cell lysis tool with existing microfluidics assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.