A number of methods have been proposed for End-to-End Spoken Language Understanding (E2E-SLU) using pretrained models, however their evaluation often lacks multilingual setup and tasks that require prediction of lexical fillers, such as slot filling. In this work, we propose a unified method that integrates multilingual pretrained speech and text models and performs E2E-SLU on six datasets in four languages in a generative manner, including the prediction of lexical fillers. We investigate how the proposed method can be improved by pretraining on widely available speech recognition data using several training objectives. Pretraining on 7000 hours of multilingual data allows us to outperform the state-of-the-art ultimately on two SLU datasets and partly on two more SLU datasets. Finally, we examine the crosslingual capabilities of the proposed model and improve on the best known result on the PortMEDIA-Language dataset by almost half, achieving a Concept/Value Error Rate of 23.65%.
This paper presents our latest investigation on end-to-end automatic speech recognition (ASR) for overlapped speech. We propose to train an end-to-end system conditioned on speaker embeddings and further improved by transfer learning from clean speech. This proposed framework does not require any parallel non-overlapped speech materials and is independent of the number of speakers. Our experimental results on overlapped speech datasets show that joint conditioning on speaker embeddings and transfer learning significantly improves the ASR performance.
We present ADVISER 1 -an open-source, multi-domain dialog system toolkit that enables the development of multi-modal (incorporating speech, text and vision), sociallyengaged (e.g. emotion recognition, engagement level prediction and backchanneling) conversational agents. The final Python-based implementation of our toolkit is flexible, easy to use, and easy to extend not only for technically experienced users, such as machine learning researchers, but also for less technically experienced users, such as linguists or cognitive scientists, thereby providing a flexible platform for collaborative research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.