In this paper, we present ADVISER 1-an open source dialog system framework for education and research purposes. This system supports multi-domain task-oriented conversations in two languages. It additionally provides a flexible architecture in which modules can be arbitrarily combined or exchanged-allowing for easy switching between rules-based and neural network based implementations. Furthermore, ADVISER offers a transparent, user-friendly framework designed for interdisciplinary collaboration: from a flexible back end, allowing easy integration of new features, to an intuitive graphical user interface supporting nontechnical users.
We present ADVISER 1 -an open-source, multi-domain dialog system toolkit that enables the development of multi-modal (incorporating speech, text and vision), sociallyengaged (e.g. emotion recognition, engagement level prediction and backchanneling) conversational agents. The final Python-based implementation of our toolkit is flexible, easy to use, and easy to extend not only for technically experienced users, such as machine learning researchers, but also for less technically experienced users, such as linguists or cognitive scientists, thereby providing a flexible platform for collaborative research.
Previous research has found that task-oriented conversational agents are perceived more positively by users when they provide information in an empathetic manner compared to a plain, emotionless information exchange. However, users' perception and ethical considerations related to a dialog systems' response language style have received comparatively little attention in the field of human-computer interaction. To bridge this gap, we explored these ethical implications through a scenario-based user study. 127 participants interacted with one of three variants of an affective, task-oriented conversational agent, each variant providing responses in a different language style. After the interaction, participants filled out a survey about their feelings during the experiment and their perception of various aspects of the chatbot. Based on statistical and qualitative analysis of the responses, we found language style played an important role in how humanlike participants perceived a dialog agent as well as how likable. Language style also had a direct effect on how users perceived the use of personal pronouns 'I' and 'You' and how they projected gender onto the chatbot. Finally, we identify and discuss ethical implications. In particular we focus on what factors/stereotypes influenced participants' impressions of gender, and what trade-offs a more human-like chatbot brings.
On the way towards general Visual Question Answering (VQA) systems that are able to answer arbitrary questions, the need arises for evaluation beyond single-metric leaderboards for specific datasets. To this end, we propose a browser-based benchmarking tool for researchers and challenge organizers, with an API for easy integration of new models and datasets to keep up with the fast-changing landscape of VQA. Our tool helps test generalization capabilities of models across multiple datasets, evaluating not just accuracy, but also performance in more realistic real-world scenarios such as robustness to input noise. Additionally, we include metrics that measure biases and uncertainty, to further explain model behavior. Interactive filtering facilitates discovery of problematic behavior, down to the data sample level. As proof of concept, we perform a case study on four models. We find that state-of-the-art VQA models are optimized for specific tasks or datasets, but fail to generalize even to other in-domain test sets, for example they cannot recognize text in images. Our metrics allow us to quantify which image and question embeddings provide most robustness to a model. All code 1 is publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.