A B S T R A C TDuring infectious disease outbreaks, the centers for disease control need to monitor particular areas. Considerable effort has been invested in the development of portable, user-friendly, and cost-effective systems for point-of-care (POC) diagnostics, which could also create an Internet of Things (IoT) for healthcare via a global network. However, at present IoT based on a functional POC instrument is not available. Here we show a fast, user-friendly, and affordable IoT system based on a miniaturized polymerase chain reaction device. We demonstrated the system's capability by amplification of complementary deoxyribonucleic acid (cDNA) of the dengue fever virus. The resulting data were then automatically uploaded via a Bluetooth interface to an Androidbased smartphone and then wirelessly sent to a global network, instantly making the test results available anywhere in the world. The IoT system presented here could become an essential tool for healthcare centers to tackle infectious disease outbreaks identified either by DNA or ribonucleic acid.
Availability of potable water is a problem especially in developing countries as their water sources are often contaminated biologically as well as by heavy metals. Electrochemical methods are suitable for field application to monitor heavy metal contents. Noble metal electrodes with large surface areas are the subject of intensive development as they can yield an improved signal-to-noise ratio, enhanced sensitivity, and lower limits of detection (LOD). Here, we present a nanostructured Au microelectrode array subsequently modified by selective electrodeposition in lithographically defined circles within a partially cross-linked gelatin layer. This method increased its surface area by a factor of ≈1440 in comparison with an original lithography-based prepared array. The Au surface properties can be tailored by a degree of gelatin layer cross-linking. We used this array for an ultrasensitive detection of the As ions content by stripping voltammetry achieving LOD of ≈0.0212 parts per billion (signal-to-noise ratio = 3.3), 470× below the content limit recommended by the World Health Organization for potable water. These nanostructured arrays were used to detect ions of other metals such as Cr, Cd, Hg, Cu, and Sb. In combination with a portable electrochemical device, we can envision an ultrasensitive heavy metal detection system for field application to monitor heavy metal contamination.
Microgels are intra-molecular crosslinked macromolecules that can be used as vehicles to deliver and release drugs at the point-of-need in the patient’s body. Here, gelatin microgels were formed from microfluidics droplets, stabilised by aldehydes and frozen into a spheroidal shape. Microgel morphology and response to external stimuli were characterised. It was found that the behaviour of the spheroidal microgels was sensitive to both pH and ionic strength and that the distribution of charges into the microgels affected the behaviour of swelling and uptake. The uptake of molecules such as Rhodamine B and Methylene Blue were investigated as a model for drug uptake/release mechanisms. Under physiological conditions, the uptake of Rhodamine was rapid and a uniform distribution of the fluorescent molecules was recorded inside the microgels. However, the mechanism of release became slower at lower pH, which mimics the stomach environment. Under physiological conditions, Methylene Blue release occurred faster than for Rhodamine. Anionic and neutral molecules were also tested. In conclusion, the dependence of uptake and release of model drugs on basic/acid conditions shows that microgels could be used for targeted drug delivery. Different shaped microgels, such as spheres, spheroids, and rods, could be useful in tissue engineering or during vascularisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.