we have identified that the human IgG2 subclass exists as an ensemble of distinct isoforms, designated IgG2-A, -B, and -A/B, which differ by the disulfide connectivity at the hinge region. In this report, we studied the structural and functional properties of the IgG2 disulfide isoforms and compared them to IgG1. Human monoclonal IgG1 and IgG2 antibodies were designed with identical antigen binding regions, specific to interleukin-1 cell surface receptor type 1. In vitro biological activity measurements showed an increased activity of the IgG1 relative to the IgG2 in blocking interleukin-1 ligand from binding to the receptor, suggesting that some of the IgG2 isoforms had lower activity. Under reduction-oxidation conditions, the IgG2 disulfide isoforms converted to IgG2-A when 1 M guanidine was used, whereas IgG2-B was enriched in the absence of guanidine. The relative potency of the antibodies in cell-based assays was: IgG1 > IgG2-A > IgG2 Ͼ Ͼ IgG2-B. This difference correlated with an increased hydrodynamic radius of IgG2-A relative to IgG2-B, as shown by biophysical characterization. The enrichment of disulfide isoforms and activity studies were extended to additional IgG2 monoclonal antibodies with various antigen targets. All IgG2 antibodies displayed the same disulfide conversion, but only a subset showed activity differences between IgG2-A and IgG2-B. Additionally, the distribution of isoforms was influenced by the light chain type, with IgG2 composed mostly of IgG2-A. Based on crystal structure analysis, we propose that IgG2 disulfide exchange is caused by the close proximity of several cysteine residues at the hinge and the reactivity of tandem cysteines within the hinge. Furthermore, the IgG2 isoforms were shown to interconvert in whole blood or a "bloodlike" environment, thereby suggesting that the in vivo activity of human IgG2 may be dependent on the distribution of isoforms.
Glycan structures attached to the C(H)2 domain of the Fc region of immunoglobulin G (IgG) are essential for specific effector functions but their role in modulating clearance is less clear. Clearance is of obvious importance for therapeutic monoclonal antibodies (Mabs) as it directly impacts efficacy. Here, we study the impact of Fc glycan structure on the clearance of four therapeutic human IgGs (one IgG1 and three IgG2s) in humans. The therapeutic IgGs were affinity purified from serum samples from human pharmacokinetic studies, and changes to the glycan profile over time were determined by peptide mapping employing high-resolution mass spectrometry. Relative levels of high-mannose 5 (M5) glycan decreased as a function of circulation time, whereas other glycans remained constant. These results demonstrate that therapeutic IgGs containing Fc high-mannose glycans are cleared more rapidly in humans than other glycan forms. The quantitative effect of this on pharmacokinetic area under the curve was calculated and shown to be relatively minor for three of the four molecules studied, but, depending on the dosing regimen and the relative level of the high-mannose glycan, this can also have significant impact. High-mannose content of therapeutic Mabs should be considered an important product quality attribute which may affect pharmacokinetic properties of therapeutic antibodies.
In this work, we present studies of the covalent structure of human IgG2 molecules. Detailed analysis showed that recombinant human IgG2 monoclonal antibody could be partially resolved into structurally distinct forms caused by multiple disulfide bond structures. In addition to the presently accepted structure for the human IgG2 subclass, we also found major structures that differ from those documented in the current literature. These novel structural isoforms are defined by the light chain constant domain (C L ) and the heavy chain C H 1 domain covalently linked via disulfide bonds to the hinge region of the molecule. Our results demonstrate the presence of three main types of structures within the human IgG2 subclass, and we have named these structures IgG2-A, -B, and -A/B. IgG2-A is the known classic structure for the IgG2 subclass defined by structurally independent Fab domains and hinge region. IgG2-B is a structure defined by a symmetrical arrangement of a (C H 1-C Lhinge) 2 complex with both Fab regions covalently linked to the hinge. IgG2-A/B represents an intermediate form, defined by an asymmetrical arrangement involving one Fab arm covalently linked to the hinge through disulfide bonds. The newly discovered structural isoforms are present in native human IgG2 antibodies isolated from myeloma plasma and from normal serum. Furthermore, the isoforms are present in native human IgG2 with either or light chains, although the ratios differ between the light chain classes. These findings indicate that disulfide structural heterogeneity is a naturally occurring feature of antibodies belonging to the human IgG2 subclass.
The objective of this study was to determine if liquid chromatography mass spectrometry (LC/MS) data of tryptic digests of proteins can be used for quantitation. In theory, the peak area of peptides should correlate to their concentration; hence, the peak areas of peptides from one protein should correlate to the concentration of that particular protein. To evaluate this hypothesis, different amounts of tryptic digests of myoglobin were analyzed by LC/MS in a wide range between 10 fmol and 100 pmol. The results show that the peak areas from liquid chromatography mass spectrometry correlate linearly to the concentration of the protein (r2 = 0.991). The method was further evaluated by adding two different concentrations of horse myoglobin to human serum. The results confirm that the quantitation method can also be used for quantitative profiling of proteins in complex mixtures such as human sera. Expected and calculated protein ratios differ by no more than 16%. We describe a new method combining protein identification with accurate profiling of individual proteins. This approach should provide a widely applicable means to compare global protein expression in biological samples.
Deamidation of asparagine residues of biological pharmaceuticals is a major cause of chemical degradation if the compounds are not formulated and stored appropriately. The mechanism of this nonenzymatic chemical reaction has been studied in great detail; however, the identification of deamidation sites in a given protein remains a challenge. In this study, we identified and characterized all deamidation sites in the conserved region of a recombinant monoclonal antibody. The conserved region of this antibody is shared by all human IgGs with the exception of minor differences in the hinge region. Our high-performance liquid chromatography method could separate the succinimide, isoaspartic, and aspartic acid isoforms of peptide fragments generated using trypsin. Each of the isoforms was unambiguously identified using tandem mass spectrometry. Deamidation at the identified four sites was slow for the intact, folded antibody at accelerated degradation conditions (pH 7.5 and 37 degrees C). Deamidation was enhanced after reduction, alkylation, and tryptic digestion, indicating that the three-dimensional structure of the antibody reduced deamidation. Furthermore, after the reduction, alkylation, and tryptic digestion, only 4 of a possible 25 asparagine residues showed deamidation, demonstrating the effect of the primary amino acid sequence, especially the -1 and +1 amino acids flanking the deamidation site. For instance, the amino acid motifs SNG, ENN, LNG, and LNN were found to be more prone to deamidation, whereas the motifs GNT, TNY, YNP, WNS, SNF, CNV, SNT, WNS, FNW, HNA, FNS, SNK, GNV, HNH, SNY, LNW, SNL, NNF, DNA, GNS, and FNR showed no deamidation. Our findings should help predict deamidation sites in proteins and peptides and help develop deamidation-resistant biological therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.