The overview covers the discovery of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, initial studies on their synthesis, evaluation of biological properties, and explorations of their potential as carriers of biologically active compounds in general and anticancer drugs in particular. The focus is on the research in the authors' laboratory -the development of macromolecular therapeutics for the treatment of cancer and musculoskeletal diseases. In addition, the evaluation of HPMA (co)polymers as building blocks of mod and new biomaterials is presented: the utilization of semitelechelic poly(HPMA) and HPMA copolymers for the modification of biomaterial and protein surfaces and the design of hybrid block and graft HPMA copolymers that self-assemble into smart hydrogels. Finally, suggestions for the design of second-generation macromolecular therapeutics are portrayed.
Four polymeric bone-targeting conjugates were synthesized based on poly(ethylene glycol) (PEG, two conjugates) and poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA, two conjugates). The well-known bone-targeting compounds, alendronate and aspartic acid peptide, were used as bone-targeting moieties. Fluorescein isothiocyanate (FITC) was attached to the conjugates as a model drug for detection purposes. The bone-targeting potential of these conjugates was tested in vitro with hydroxyapatite (HA) and in mice. The data obtained indicated that these novel delivery systems could specifically accumulate in the bone tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.