Collagen composite scaffolds have been used for a number of studies in tissue engineering. The hydration of such highly porous and hydrophilic structures may influence mechanical behaviour and porosity due to swelling. The differences in physical properties following hydration would represent a significant limiting factor for the seeding, growth and differentiation of cells in vitro and the overall applicability of such hydrophilic materials in vivo. Scaffolds based on collagen matrix, poly(DL-lactide) nanofibers, calcium phosphate particles and sodium hyaluronate with 8 different material compositions were characterised in the dry and hydrated states using X-ray microcomputed tomography, compression tests, hydraulic permeability measurement, degradation tests and infrared spectrometry. Hydration, simulating the conditions of cell seeding and cultivation up to 48 h and 576 h, was found to exert a minor effect on the morphological parameters and permeability. Conversely, hydration had a major statistically significant effect on the mechanical behaviour of all the tested scaffolds. The elastic modulus and compressive strength of all the scaffolds decreased by ~95%. The quantitative results provided confirm the importance of analysing scaffolds in the hydrated rather than the dry state since the former more precisely simulates the real environment for which such materials are designed.
Nanocomposite scaffolds which aimed to imitate a bone extracellular matrix were prepared for bone surgery applications. The scaffolds consisted of polylactide electrospun nano/sub-micron fibres, a natural collagen matrix supplemented with sodium hyaluronate and natural calcium phosphate nano-particles (bioapatite). The mechanical properties of the scaffolds were improved by means of three different cross-linking agents: N-(3-dimethylamino propyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide in an ethanol solution (EDC/NHS/EtOH), EDC/NHS in a phosphate buffer saline solution (EDC/NHS/PBS) and genipin. The effect of the various cross-linking conditions on the pore size, structure and mechanical properties of the scaffolds were subsequently studied. In addition, the mass loss, the swelling ratio and the pH of the scaffolds were determined following their immersion in a cell culture medium. Furthermore, the metabolic activity of human mesenchymal stem cells (hMSCs) cultivated in scaffold infusions for 2 and 7 days was assessed. Finally, studies were conducted of cell adhesion, proliferation and penetration into the scaffolds. With regard to the structural stability of the tested scaffolds, it was determined that EDC/NHS/PBS and genipin formed the most effectively cross-linked materials. Moreover, it was discovered that the genipin cross-linked scaffold also provided the best conditions for hMSC cultivation. In addition, the infusions from all the scaffolds were found to be non-cytotoxic. Thus, the genipin and EDC/NHS/PBS cross-linked scaffolds can be considered to be promising biomaterials for further in vivo testing and bone surgery applications.
With the development of a wide range of new biomaterials for the sensing of different cell behaviour, it is important to consider whether the cells tested in vitro are in direct contact with the material or whether cell-biomaterial contact is mediated by an interfacial layer of proteins originating from the culture medium or from the cells themselves. Thus, this study describes the differences between the cell adhesion mediated by proteins originating from foetal bovine serum and without the presence of such proteins 2 h following cell seeding exemplarily with different cell types (an osteoblastic cell line, primary fibroblasts, and mesenchymal stem cells). Three of the examined cell types were found to react differently to differing conditions in terms of cell shape, area, and number. Nevertheless, the expression and localization of the various proteins involved in cell adhesion and signalling (CD44, vinculin, talin, actin, focal adhesion kinase, Rho-GTPases and extracellular signal-regulated kinases 1 and 2) were, in general, similar with respect to all the cell types tested, albeit varying according to the presence or absence of serum. Moreover, no classical focal adhesions were formed during cell adhesion without serum proteins, while different signalling pathways were involved in this process. The study systematically describes and discusses the cell adhesion of three different human cell types to a well-known substrate without the presence of external proteins and it is hoped that this knowledge will be subsequently applied in biomaterial applications in which the presence of external proteins is undesirable (e.g. for biosensing purposes).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.