Lipases play a crucial role in metabolism of microbes, fungi, plants, and animals, and in analytical chemistry, they are often used in detection of fats and triglycerides. Determination of lipase activity is also important in toxicology, when lipase activity can be both increased and decreased by organophosphates and other pesticides and in medicine for diagnosis of heart diseases. The standard method for lipase activity determination is based on cleaving ester bonds in lipase buffer containing Tween. Our aim was to find a method with faster and more sensitive response. It is known that acetylcholinesterase belongs to the same group of hydrolases enzymes as lipases and it cleaves indoxyl acetate, so we assume indoxyl acetate could report a similar reaction with lipase. Our method is based on indoxyl acetate as a substrate for lipase, where indoxyl acetate is cleaved by lipase to indoxyl and acetate moiety and blue indigo is created. The method was optimized for different times and amount of enzyme and compared with the standard Tween assay. The calibration curve measured in reaction time 20 minutes with 10 μl of lipase exhibited the best analytical parameters, and it showed Michaelis–Menten response with the Michaelis–Menten constant equal to 8.72 mmol/l. The indoxyl acetate-based method showed faster and more sensitive response than the standard method for lipase activity determination, so it has great potential in biosensor construction and it could be used in industry, medicine, toxicology, and common practice where the activity of lipases is need to be measured.
Background. Alzheimer’s disease (AD) is a multifactorial progressive and irreversible neurodegenerative disorder affecting mainly the population over 65 years of age. It is becoming a global health and socioeconomic problem, and the current number of patients reaching 30–50 million people will be three times higher over the next thirty years. Objective. Late diagnosis caused by decades of the asymptomatic phase and invasive and cost-demanding diagnosis are problems that make the whole situation worse. Electrochemical biosensors could be the right tool for less invasive and inexpensive early diagnosis helping to reduce spend sources— both money and time. Method. This review is a survey of the latest advances in the design of electrochemical biosensors for the early diagnosis of Alzheimer’s disease. Biosensors are divided according to target biomarkers. Conclusion. Standard laboratory methodology could be improved by analyzing a combination of currently estimated markers along with neurotransmitters and genetic markers from blood samples, which make the test for AD diagnosis available to the wide public.
AIMS: This review article focuses on electrochemical biosensors in the diagnosis of diabetes mellitus and their latest trends and advances. In particular, non-enzymatic, non-invasive, wearable, and non-glucose biosensors are described. METHODS: The current literature was searched and recent works on this matter were cited and discussed in the text of this paper. RESULTS: The overworld health problem, the incurable disease, the global burden on health insurers and society, and above all one of the leading causes of death -all characterize diabetes mellitus, a lifelong chronic disease that affects hundreds of millions of people around the world. The new types of biosensors bring new opportunities in the care of diabetic patients and improve current methods. The practical relevance of the recent fi ndings is expected in medicine in next years. CONCLUSIONS: The authors summarized the modern possibilities of biosensing, their pros and cons, and their perspectives for the future. The discussion outcome from the current literature (Tab. 4, Fig. 1, Ref. 63).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.