Artificial Intelligence (AI)-based systems are widely employed nowadays to make decisions that have far-reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well-grounded in a legal frame. In this survey, we focus on data-driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth.This article is categorized under:
Publicly available social media archives facilitate research in a variety of fields, such as data science, sociology or the digital humanities, where Twitter has emerged as one of the most prominent sources. However, obtaining, archiving and annotating large amounts of tweets is costly. In this paper, we describe TweetsKB, a publicly available corpus of currently more than 1.5 billion tweets, spanning almost 5 years (Jan'13-Nov'17). Metadata information about the tweets as well as extracted entities, hashtags, user mentions and sentiment information are exposed using established RDF/S vocabularies. Next to a description of the extraction and annotation process, we present use cases to illustrate scenarios for entity-centric information exploration, data integration and knowledge discovery facilitated by TweetsKB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.