Artificial Intelligence (AI)-based systems are widely employed nowadays to make decisions that have far-reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well-grounded in a legal frame. In this survey, we focus on data-driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth.This article is categorized under:
Crowdsourcing is increasingly being used as a means to tackle problems requiring human intelligence. With the evergrowing worker base that aims to complete microtasks on crowdsourcing platforms in exchange for financial gains, there is a need for stringent mechanisms to prevent exploitation of deployed tasks. Quality control mechanisms need to accommodate a diverse pool of workers, exhibiting a wide range of behavior. A pivotal step towards fraud-proof task design is understanding the behavioral patterns of microtask workers. In this paper, we analyze the prevalent malicious activity on crowdsourcing platforms and study the behavior exhibited by trustworthy and untrustworthy workers, particularly on crowdsourced surveys. Based on our analysis of the typical malicious activity, we define and identify different types of workers in the crowd, propose a method to measure malicious activity, and finally present guidelines for the efficient design of crowdsourced surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.