The comprehensive study of the Ni0.5Zn0.5Fe2O4 ferrite nanopowder crystallized in the inverse spinel structure and synthesized by co-precipitation method is presented. The distribution of Fe 3+ cations among tetrahedral and octahedral sites was confirmed. The microstructural investigations revealed the presence of ultrafine grained structure with an average crystallites size in the range of 14 ÷ 20 nm. Raman and Fourier-Transform Infrared (FTIR) spectroscopy studies confirmed typical spinel structure with tetrahedrally and octahedrally iron occupancy as well as indicate co-associated iron-oxide phases considered as factors responsible for the structural disorder. The magnetic properties revealed the superparamagnetic behavior at the room temperature with estimated critical size of single domain particles about 63 nm. The analysis of saturation magnetization pointed to the spin canting phenomenon in the surface layer. The valuation of exchange coupling parameters based on the mean field theory calculation strengthened the conclusion about opposite magnetization arrangement between tetrahedral and octahedral magnetic sublattices.
The paper is focused on the magnetic and structural properties of RCo5 (R = Y, Gd, Sm) intermetallics fabricated by high energy ball -milling (HEBM). The investigated samples were first produced by arc-melting as bulk materials and then were milled for 1h in dimethylformamide with balls to powder ratio 10:1. The influence of the HEBM parameters on the microstructure was investigated by a variety of complementary measurement methods. The Rietveld refinement was performed to estimate the dependence of crystallite size and microstrain on type of sample. The hysteresis loops were recorded by SQUID magnetometer at 2 K and 300 K and at magnetic field up to µ0H 7 T. The impact of short HEBM process is visible as the enhancement of coercivity and simultaneous reduction of the saturation magnetization.
Magnetic nanocomposites SmCo5/α-Fe were synthesized mechanically by high-energy ball milling (HEBM) from SmCo5 and 5%wt. of α-Fe powders. The X-ray diffraction analysis reveals the hexagonal 1:5 phase as the main one accompanied by the cubic α-Fe phase and 2:17 rhombohedral as the secondary phase. The content of each detected phase is modified throughout the synthesis duration. A significant decrease in crystallite size with a simultaneous increase in lattice straining is observed. A simultaneous gradual reduction in particle size is noted from the microstructural analysis. Magnetic properties reveal non-linear modification of magnetic parameters associated with the strength of the exchange coupling induced by various duration times of mechanical synthesis. The highest value of the maximum energy product (BH)max at room temperature is estimated for samples milled for 1 and 6 h. The intermediate mixed-valence state of Sm ions is confirmed by electronic structure analysis. An increase in the Co magnetic moment versus the milling time is evidenced based on the performed fitting of the Co3s core level lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.