The study compares the microstructure of three commercial dental cobalt matrix alloys with related chemical composition declared by the manufacturer. Casts were produced with lost wax method, then melted and casted with centrifugal induction casting machine. The Co-Cr-Mo alloys were casted according to the manufacturers procedure. The samples' chemical composition and phase composition, respectively, using WD-XRF (Wavelength Dispersive X-Ray Fluorescence) and XRD (X-ray Diffarction) methods were analysed. Casts microstructure by mean of LOM (Light Optical Microscopy), SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were investigated. Vickers hardness HV10 was measured. Quantitative microstructure evaluation was performed by means of computer image processing. The results of the chemical composition indicate the high stability of the chemical composition for alloy A. In case of alloys B and C, there was a significant difference in carbon content. Quantitative differences in image of microstructure between of castings A and B, C were noticed. The greater amount of precipitates was recorded for castings with higher carbon content. In all investigated castings, the presence of β matrix solution and M23C6 carbide precipitations was found.
The development of the aviation industry is related to the production of new materials that can operate at high temperatures and corrosive atmospheres. The paper presents new material for application in high temperature obtained by pressing and sintering a composite made from SiC-Al 2 O 3 -Ni. Analysis of the microstructure showed high porosity, which is caused by used manufacturing technique. Studies of thermal expansion do not show any phase transition and keeps linearity in thermal expansion in wide range (from 550 to 1450 K). X-ray diffraction showed the presence of all components of phase with those used, the phase associated with the components and silicon oxide, which was formed during the sintering of the samples.
Superalloys have been developed for specific, dedicated properties and applications. One of the main application for this material is advanced, high-performance aircraft engines elements. Turbine engine creates harsh environments for materials due to the high operating temperature and stress level. Hence, as described in this article, many alloys used in the turbine section of these engines are very complex and highly optimized. This article provides an overview of structural changes that occur during the aging process of wrought and cast alloys and provides insight into the use of precipitated particles to achieve desired structures. Example will focus on alloy Inconel 718 and CMSX-4. Functional properties of these alloys can be achieved by choosing proper heat treatment parameters to obtain required rate between secondary phases. The paper also attempts to determine structural perfection and changes of crystallographic orientation along the axis of growth of single crystal nickel superalloys cast using X-ray topography and Laue diffraction method. Single crystal bars and turbine blades were manufactured in VIM furnace using the Bridgeman method. Withdrawing rates typical for CMSX-4 superalloy were used. It has been found that with increasing withdrawing rate the nature of distribution along the axis of growth of the angle of [001] direction deviation from the axis of single crystal blades growth had changed. The change of the withdrawing rate results also in the rotation of γ’ phase in the form of cubes against the axis of single crystal blades growth.
Ceramic topcoats of thermal barrier coatings (TBCs) make it possible to increase the working temperature of the hot sections of jet engines. Yttria-stabilized zirconia oxide (YSZ) is usually used to protect the turbine blades and vanes against high temperature and oxidation. It is necessary to develop new materials which can operate at higher temperatures in a highly oxidizing gas atmosphere. Re2Zr2O7-type pyrochlores are promising YSZ replacements. Usually, they are produced by mixing pure oxides in the calcination process at higher temperatures. In a recent article, the new concept of pyrochlore synthesis during the deposition process was presented. The new technology, called reactive plasma spray physical vapor deposition (reactive PS-PVD), was developed and a Gd2Zr2O7 (GZO) coating was achieved. The reactive PS-PVD process allowed for the use of a mixture of untreated ZrO2 and Gd2O3 powders as reactants, instead of the commercially available gadolinium zirconate powders used in other types of processes. The results of microstructure observations revealed a columnar microstructure in the produced ceramic layer. The phase composition indicated the presence of gadolinium zirconate. Thermal analysis showed a decrease in the thermal conductivity in the range of 700 to 1200 °C of the produced layers, as compared to the layer made of the currently used conventional YSZ.
The role of thermal barrier coatings is to ensure heat resistance of elements in the hot section of turbofan aircraft engines in high temperatures. Stages of the production process are made up of preparing the base material, forming the aluminide interlayer by chemical vapour deposition method and depositing of the ceramic coating. The paper presents results of tests into microstructure of ZrO2 and Y2O3 ceramic coatings formed by EB-PVD method. The microstructure was assessed in several spots of the turbine blade of a high pressure turbofan engine by means of determining the coating thickness as well as height and width of ceramic columns, depending on the forming conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.