Paneth cells are the primary source of C-type lysozyme, a b-1,4-N-acetylmuramoylhydrolase that enzymatically processes bacterial cell walls. Paneth cells are normally present in human cecum and ascending colon, but are rarely found in descending colon and rectum; Paneth cell metaplasia in this region and aberrant lysozyme production are hallmarks of inflammatory bowel disease (IBD) pathology. Here, we examined the impact of aberrant lysozyme production in colonic inflammation. Targeted disruption of Paneth cell lysozyme (Lyz1) protected mice from experimental colitis. Lyz1-deficiency diminished intestinal immune responses to bacterial molecular patterns and resulted in the expansion of lysozyme-sensitive mucolytic bacteria, including Ruminococcus gnavus, a Crohn's disease-associated pathobiont. Ectopic lysozyme production in colonic epithelium suppressed lysozyme-sensitive bacteria and exacerbated colitis. Transfer of R. gnavus into Lyz1 À/À hosts elicited a type 2 immune response, causing epithelial reprograming and enhanced anti-colitogenic capacity. In contrast, in lysozyme-intact hosts, processed R. gnavus drove pro-inflammatory responses. Thus, Paneth cell lysozyme balances intestinal anti-and pro-inflammatory responses, with implications for IBD.
Background Intestinal microbiota influences the progression of colitis-associated colorectal cancer (CAC). With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of CAC. Curcumin is the most active constituent of the ground rhizome of the Curcuma Longa plant, which has been demonstrated to have anti-inflammatory, anti-oxidative and anti-proliferative properties. Methods Il10−/− mice on 129/SvEv background were used as a model of CAC. Starting at 10 weeks of age, WT or Il10−/− mice received six weekly i.p. injections of azoxymethane (AOM) or saline, and were started on either a control or curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were sacrificed at 30 weeks of age. Results Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10−/− mice, and limited effects were seen in AOM/Il10−/− mice. In WT and in Il10−/− mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10−/− mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. Conclusions In AOM/Il10−/− model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology.
Background & Aims Klotho deficiency in hypomorphic KL mice leads to premature senescence and phenotype consistent with impaired mineral homeostasis. Klotho has anti-inflammatory properties protecting from NO-induced endothelial dysfunction, reduces the expression of endothelial adhesion molecules, and may contribute to T-cell dysfunction. Since defective Ca2+/Pi homeostasis leading to osteopenia/osteoporosis is frequently associated with human IBD, we investigated the changes in Klotho gene expression as a consequence of experimental colitis. Methods We utilized three murine IBD models: TNBS colitis, microflora-induced colitis in gnotobiotic IL-10−/− mice, and adoptive CD4+CD45RBhigh T-cell transfer colitis. These studies were followed by in vitro approaches using renal epithelial cells (mpkDCT4 and mIMCD3), and the cloned murine KL gene promoter. Results Renal expression of Klotho mRNA and protein was significantly inhibited in all three models of human IBD. This degree of inhibition was correlated with the severity of colitis, and was reversed by neutralizing anti-TNF antibodies. In vitro, TNF resulted in a significant inhibition of KL expression and was further potentiated by IFN-γ. TNF/IFN-γ combination resulted in increased iNOS expression and significantly elevated the concentration of NO in medium. The effect of IFN-γ could be reproduced by cell exposure to SNAP (NO donor), and reversed by iNOS inhibitor, L-NIL. The cytokine effects were transcriptionally mediated since Klotho mRNA stability remained unaffected, while reporter constructs with the mKL gene promoter displayed significant downregulation in transiently transfected renal epithelial cells. Conclusions These novel findings could help explain several extraintestinal complications including abnormalities in bone homeostasis in patients with chronic colitis.
Ontogenic changes occur in intestinal brush-border membrane vesicle (BBMV) Na+/H+exchange activity. The present studies were designed to investigate ontogenic changes in Na+/H+exchanger (NHE) isoform 3 in rat jejunum. pH-dependent Na+ uptake was assayed in four age groups of rats in the presence of 0, 50, or 800 μM HOE-694, a specific NHE inhibitor with differential sensitivities for NHE2 [inhibition constant ( K i) = 5 μM in PS120 fibroblasts] and NHE3 ( K i = 650 μM). Results showed that NHE2 and NHE3 contribute to basal BBMV uptake at all ages. Uptake levels were highest in 6-wk-old rats, lower in adult rats, and lowest in 2-wk-old (suckling) and 3-wk-old (weanling) rats. NHE3 contribution ranged from 92% at 6 wk of age to 59% at 2 and 3 wk of age. NHE3 inhibition by 800 μM HOE-694 was 38–45%. Statistical analysis showed that HOE-694 had a significant effect at both concentrations at all ages and that differences were present between all ages except 2- and 3-wk rats (at all HOE-694 concentrations). Northern blot analyses of jejunal mucosa showed lowest NHE3 mRNA levels in 2-wk animals and higher levels in all other age groups. Polyclonal antibodies were developed against an NHE3 COOH-terminal fusion protein, and antiserum was characterized with NHE3-transfected PS120 cells and by immunohistochemistry. Western blot analyses showed lowest protein levels in 2-wk animals and higher levels in the other ages. Suckling rats were subcutaneously injected with methylprednisone (MP) for 2 days and killed 1 day later. Northern blot analyses showed a twofold increase in NHE3 mRNA expression with MP treatment. Immunoblot analyses showed a 2.5-fold increase in NHE3 immunoreactive protein levels with MP injection. Overall, these data suggest that NHE3 is regulated during ontogeny and that ontogenic changes are most apparent around the time of weaning. Furthermore, the data suggest that NHE3 is regulated at transcriptional and posttranscriptional levels during mammalian intestinal development.
Na+/H+ exchanger 3 (NHE3) provides a major route for intestinal Na+ absorption. NHE3 has been considered a target of proinflammatory cytokines and enteropathogenic bacteria, and impaired NHE3 expression and/or activity may be responsible for inflammation-associated diarrhea. However, the possibility of loss of NHE3 function reciprocally affecting gut immune homeostasis has not been investigated. In this report, we describe that NHE3-deficient mice spontaneously develop colitis restricted to distal colonic mucosa. NHE3(-/-) mice housed in a conventional facility exhibited phenotypic features such as mild diarrhea, occasional rectal prolapse, and reduced body weight. Genomewide microarray analysis identified not only a large group of transport genes that potentially represent an adaptive response, but also a considerable number of genes consistent with an inflammatory response. Histological examination demonstrated changes in the distal colon consistent with active inflammation, including crypt hyperplasia with an increased number of 5-bromo-2'-deoxyuridine-positive cells, diffuse neutrophilic infiltrate with concomitant 15-fold increase in matrix metalloproteinase 8 expression, an increased number of pSer276-RelA-positive cells, and a significant decrease in periodic acid-Schiff-positive goblet cells. Real-time PCR demonstrated elevated expression of inducible nitric oxide synthase (38-fold), TNF-alpha (6-fold), macrophage inflammatory protein-2 (48-fold), and IL-18 (3-fold) in the distal colon of NHE3(-/-) mice. NHE3(-/-) mice showed enhanced bacterial adhesion and translocation in the distal colon. Colitis was ameliorated by oral administration of broad-spectrum antibiotics. In conclusion, NHE3 deficiency leads to an exacerbated innate immune response, an observation suggesting a potentially novel role of NHE3 as a modifier gene, which when downregulated during infectious or chronic colitis may modulate the extent and severity of colonic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.