Purpose -The purpose of this paper is to present the advantages of computer-aided design/rapid prototyping (CAD/RP) usage in designing and manufacturing of the core models used for precise casting with direct and single solidification of aircraft engine turbine blade cores. Design/methodology/approach -The process of modelling three-dimensional CAD geometry of research blade in relation to the model of the core was presented with different wax types used in the RP technique. Findings -The geometry of the blade model has been designed in a way which allows making a silicon mould on the basis of a base prototype in the process of rapid tooling (RP/RT). Filing by different wax types was investigated in mean of the impact on filling accuracy of the mould cavity. Originality/value -The resulting models were used to make ceramic moulds and carry further work on the development of casting technology in the process of directional solidification and single crystal solidification of core blades of aircraft engines.
Purpose The purpose of this paper is to present the methodology for manufacturing of aircraft transmission gears using incremental method of rapid prototyping (RP) – direct metal laser sintering (DMLS). The production of prototypes from metallic powders using described system allows the execution of final elements of complex structures with additional economic impacts. Design/methodology/approach The paper describes the use of selective laser sintering method (DMLS) by EOS Company. Whole chain of production of prototype is presented with the addition of geometric accuracy measurements by blue light laser device. Findings Presented in the research analysis of SLS/SLM technologies as rapid manufacturing systems shows that they can be applied in the production of prototypes used in the manufacturing process of gears for propulsion systems in aviation industry. Also, very important is the geometrical accuracy of gear prototypes produced by incremental methods. It determines subsequent treatment steps for aircraft propulsion system gears. Practical Implications The use of RP techniques as an alternative for conventionally used manufacturing method has mainly an economic impact related to the cost of time-consuming process and amount of defected elements appearing in serial production. Originality/value This paper presents possibility to use RP – DMLS system – for propulsion elements of aircraft structure. This research is original because of the complex description of the whole chain of manufacturing process. Additionally, geometrical accuracy measurement methodology by blue light presented with the RP method of manufacturing gives the research a unique characteristic.
Purpose The purpose of this paper is to present coordinate measuring system possibilities in the meaning of the geometric accuracy assessment of hot zone elements in aircraft engines. The aim of the paper is to prove that this method, which uses blue light and is most sufficient and cost-saving method, can to be used in the production line for serial manufacturing of elements, for which a high level of accuracy is required. Design/methodology/approach The analysis of the geometric accuracy of the blades was performed using non-contact optical coordinate scanner ATOS Triple Scan II Blue Light, manufactured by GOM Company, at the Department of Mechanical Engineering, Rzeszów University of Technology. Geometric analysis was conducted for blades manufactured from different waxes (A7Fr/60 and RealWax VisiJet CPX200), thus comparing injection technique and rapid prototyping (RP) method, and for casting made of Inconel 713C nickel-based superalloy. Findings The analysis of the criteria for the method of blades’ measuring selection showed that the chosen system successfully met all criteria for the verification of blades’ geometry at the selected stages of the process. ATOS II optical scanner with blue light technology allows measurement almost regardless of daylight or artificial (white) light. This allows the application of the measurement system in the production cycle, thus eliminating the need to create special conditions for measurements. Practical implications Requirements related to the accuracy of measured values, diversity and allowable measurement time are linked with the methods of production. Modern manufacturing methods based on computer-aided design systems/manufacturing/engineering systems require a non-contact optical measurement method based on the computer-aided-based coordinate measuring technique. In case of the non-contact optical scanning method based on the ATOS GOM measuring system, time and measurement costs depend on the methodology of measurement and the possibility of its automation. This is why the presented paper has a practical impact on possibilities for the automation of geometric accuracy measurements of obtained elements in the series production line. Social implications The use of ATOS Triple Scan II Blue Light by GOM Company allows the reduction of cost and time of production because of the possibility of the introduction of this system in an automated production line. Additionally, the measurement of hot section blades of aircraft engines by using the blue light method is much more accurate and has implication as it impacts safety of further used manufactured elements. Originality/value This paper presents the possibility of using the ATOS Triple Scan II Blue Light measuring system for geometric accuracy measurements in case of hot section blades of aircraft engines. This research is original because it describes three model geometric accuracy measurements, wax model obtained using the injection technique, wax model obtained using the I RP process and casting made of Inco...
Yttria-stabilized zirconia (YSZ) is one of the most common materials used for a ceramic top coat in the thermal barrier coating (TBC). The high operating temperature used in the gas turbine engines causes the stress between the top coat and the bond coat. The stress relaxation can be assured by modifications of YSZ. Hence, studies on how to modify the chemical and phase composition of these coatings are still conducted. The laser flash analysis was used to determine the thermal diffusivity of composite mixture of 8 mol% yttria-stabilized zirconia with a-Al 2 O 3 in the range of temperatures between 20 and 1100°C. The powders were prepared with 5 and 25 mass% Al 2 O 3 addition to 8YSZ. The particle size distribution was done for each powder to analyse the grain size after milling of the a-Al 2 O 3 with 8YSZ in the ball mill. The density of each powder was measured in the helium pycnometer. The disc-shaped samples were produced by pressing using an isostatic press and then sintered at various temperatures: 1000, 1200, 1400 and 1600°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.