The purpose of this study was to develop and validate a high-sensitivity methodology for identifying one of the most used drugs—ketamine. Ketamine is used medicinally to treat depression, alcoholism, and heroin addiction. Moreover, ketamine is the main ingredient used in so-called “date-rape” pills (DRP). This study presents a novel methodology for the simultaneous determination of ketamine based on the Dried Blood Spot (DBS) method, in combination with capillary electrophoresis coupled with a mass spectrometer (CE-TOF-MS). Then, 6-mm circles were punched out from DBS collected on Whatman DMPK-C paper and extracted using microwave-assisted extraction (MAE). The assay was linear in the range of 25–300 ng/mL. Values of limits of detection (LOD = 6.0 ng/mL) and quantification (LOQ = 19.8 ng/mL) were determined based on the signal to noise ratio. Intra-day precision at each determined concentration level was in the range of 6.1–11.1%, and inter-day between 7.9–13.1%. The obtained precision was under 15.0% (for medium and high concentrations) and lower than 20.0% (for low concentrations), which are in accordance with acceptance criteria. Therefore, the DBS/MAE/CE-TOF-MS method was successfully checked for analysis of ketamine in matrices other than blood, i.e., rose wine and orange juice. Moreover, it is possible to identify ketamine in the presence of flunitrazepam, which is the other most popular ingredient used in DRP. Based on this information, the selectivity of the proposed methodology for identifying ketamine in the presence of other components of rape pills was checked.
The aim of this work was to develop a new method for the determination of selected substances from the date-rape drugs group: ketamine, benzodiazepines and cocaine. The method is based on the dried blood spot method which seems to be a suitable tool in the analysis of tested substances. The extraction process based on microwave-assisted extraction was optimized to enable optimal conditions for the isolation of a wide range of analytes from blood samples collected on DBS cards. The extraction with ethyl acetate with a buffer of pH = 9 carried out at a temperature of 50 °C for 15 min ensured high extraction efficiency of the tested analytes. The optimized method was validated. Limits of detection (LOD = 4.38–21.1 ng/mL) and quantification (LOQ = 14.6–70.4 ng/mL), inter- and intra-day precision (CV = 1.37–13.4% and 3.39–14.8%, respectively), recovery (RE = 93.0–112.4%) and matrix effect (ME = 98.4–101.6%) were determined. The validation results indicate the possibility of using the proposed method in the analysis of real blood samples collected from victims of sexual assault.
Two benzodiazepine type drugs, that is, nitrazepam and 7-aminonitrazepam, were studied at the electrified liquid-liquid interface (eLLI). Both drugs are illicit and act sedative in the human body and moreover are used as date rape drugs. Existence of the diazepine ring in the concerned chemicals structure and one additional amine group (for 7-aminonitrazepam) allows for the molecular charging below their pKa values, and hence, both drugs can cross the eLLI interface upon application of the appropriate value of the Galvani potential difference. Chosen molecules were studied at the macroscopic eLLI formed in the four electrode cell and microscopic eLLI formed within a microtip defined as the single pore having 25 μm in diameter. Microscopic eLLI was formed using only a few μL of the organic and the aqueous phase with the help of a 3D printed cell. Parameters such as limit of detection and voltammetric detection sensitivity are derived from the experimental data. Developed methodology was used to detect nitrazepam in pharmaceutical formulation and both drugs (nitrazepam and 7-aminonitrazepam) in spiked biological fluids (urine and blood).
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.