Both granulocyte colony-stimulating factor (G-CSF) and cyclophosphamide (CY) are employed in the clinic as mobilizing agents to stimulate the egress of haematopoietic stem/progenitor cells (HSPC) from bone marrow (BM) into peripheral blood (PB). However, although both compounds are effective, the simultaneous administration of G-CSF + CY allows for optimal mobilization. The aim of this study was to compare morphological changes in major haematopoietic organs in mice mobilized by G-CSF + CY. We employed the standard G-CSF + CY mobilization protocol, in which mice were injected at day 0 with a single dose of CY followed by daily injection of G-CSF for 6 consecutive days. We noticed that the cytoreductive effect of CY on BM and spleen tissue was compensated at day 2 by the pro-proliferative effect of G-CSF. Furthermore, as evidenced by histological examination of BM sections at day 4, egress of haematopoietic cells from BM was accelerated by 2 days as compared to mobilization by G-CSF or CY alone; also, by day 6 there was accumulation of early haematopoietic (Thy-l(low) c-kit+) cells in the spleens and livers of mobilized animals. This implies that HSPC that are mobilized from BM and circulate in PB may 'home' to peripheral organs. We envision that such an accumulation of these cells in the spleen (which is a major haematopoietic organ in mouse) allows them to participate in haematopoietic reconstitution. Their homing to other sites (for example the liver) is evidence that BM-derived stem cells are playing a pivotal role in organ/tissue regeneration. The potential involvement of major chemoattractants for stem cells, like stromal-derived factor-1 which is induced by CY in various regenerating organs such as the liver, requires further study. We conclude that inclusion of CY into mobilization protocols on the one hand efficiently increases the egress of HSPC from the BM, but on the other hand may lead to the relocation of BM stem cell pools to peripheral tissues.
Rheumatoid arthritis (RA) is a systemic chronic inflammatory autoimmune joint disease, characterized by progressive articular damage and joint dysfunction. One of the symptoms of this disease is persistent inflammatory infiltration of the synovial membrane, the principle site of inflammation in RA. In the affected conditions, the cells of the synovial membrane, fibroblast-like synoviocytes and macrophage-like synovial cells, produce enzymes degrading cartilage and underlining bone tissue, as well as cytokines increasing the infiltration of immune cells. In patients with RA, higher levels of adiponectin are measured in the serum and synovial fluid. Adiponectin, a secretory product that is mainly white adipose tissue, is a multifunctional protein with dual anti-inflammatory and pro-inflammatory properties. Several studies underline the fact that adiponectin can play an important pro-inflammatory role in the pathophysiology of RA via stimulating the secretion of inflammatory mediators. This narrative review is devoted to the presentation of recent knowledge on the role played by one of the adipokines produced by adipose tissue—adiponectin—in the pathogenesis of rheumatoid arthritis.
A wealth of research has comprehensively documented the harmful effects of traditional cigarette smoking and nicotine on human health. The lower rate of exposure to harmful chemicals and toxic substances offered by alternative electronic smoking devices (e-cigarettes, vaping, etc.) has made these methods of smoking popular, especially among adolescents and young adults, and they are regarded frequently as safer than regular cigarettes. During vaporization of these so-called e-liquids, toxins, carcinogens and various other chemical substances may be released and inhaled by the user. Data on the potential human health effect attendant on exposure to e-vapor are based mainly on animal and in vitro studies. The oral tissues are the first locus of direct interaction with the components of the inhaled vapor. However, the short-term as well as long-term effects of the exposure are not known. The aim of the review is to briefly present data on the effects of the chemical components and toxins of e-cigarette vapor on oral cavity cells and tissues of oral health.
: E-cigarettes, a comparatively new phenomenon, are regarded as a safer alternative to conventional cigarettes. They are increasingly popular among adolescents of both sexes, and many smokers use e-cigarettes in their attempts to quit smoking. There is little understanding of the effects of exposure to e-cigarette vapors on human reproductive health, human development, or the functioning of the organs of the male and female reproductive systems. Data on the effects of the exposure were derived mainly from animal studies, and they show that e-cigarettes can affect fertility. Here, we review recent studies on the effects of exposure to e-cigarettes on facets of morphology and function in the male and female reproductive organs. E-cigarettes, even those which are nicotine-free, contain many harmful substances, including endocrine disruptors, which disturb hormonal balance and morphology and the function of the reproductive organs. E-cigarettes cannot be considered a completely healthy alternative to smoking. As is true for smoking, deleterious effects on the human reproductive system from vaping are likely, from the limited evidence to date.
Diabetes is a predictor of nonalcoholic fatty liver disease (NAFLD). There are data suggesting that Tribulus terrestris (TT) saponins act as antidiabetic agents and protect against NAFLD. The effect of saponins may be increased by fermentable fibers such as inulin. The aim of the present study was to investigate the influence of TT saponins and TT saponins plus inulin on the plasma lipid profile and liver fatty acids of rats with induced diabetes mellitus type 2 (T2DM). The study was performed on 36 male Sprague–Dawley rats divided into two main groups: control and diabetic. Animals of the diabetic (DM) group were fed a high-fat diet and injected with streptozotocin (low doses). Animals of the control group (nDM) were on a regular diet and were injected with buffer. After the injections, the animals were split into subgroups: three non-diabetic (nDM): (i) control (c-C); (ii) saponin-treated rats (C-Sap); (iii) rats treated with saponins + inulin (C-Sap + IN), and three diabetic subgroups (DM): (iv) control (c-DM); (v) saponin-treated rats (DM-Sap); (vi) rats treated with saponins + inulin (DM-Sap + IN). Liver fatty acids were extracted and analyzed by gas chromatography, and plasma glucose and lipids were measured. The study showed significant changes in liver morphology, liver fatty acids, plasma lipid profile, and plasma glucose. In summary, supplementation with TT saponins or saponins with inulin for one month decreased the level of steatosis in rats with induced type 2 diabetes. Moreover, there were favorable effects on the plasma lipid profile in the rats. However, additional supplementation with inulin had a negative effect on liver morphology (with a microvesicular type of steatosis) in the non-diabetes group. Moreover, supplementation with inulin had a negative effect on plasma glucose in both diabetic and non-diabetic rats. These data show that a diet enriched with fermentable fibers reveals different effects in different organisms, and not all sources and forms of fiber are beneficial to health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.