Electrochemical conversion of CO 2 into CO using metal complex/carbon-based heterogenized hybrids can be both highly efficient and selective. The ways in which the molecular complexes are immobilized on the carbon substrates and participate in the electrocatalytic reactions that yield CO 2 reduction are not always well-understood. In this work, a highly soluble and sterically hindered cobalt(II) octaalkoxyphthalocyanine was successfully immobilized on chemically converted graphene via π−π stacking. In comparison to an analogous cobalt phthalocyanine/graphene catalyst, the alkoxy substitutions helped to suppress the phthalocyanine aggregation on the graphene sheets, resulting in a significantly enhanced catalytic activity by a single phthalocyanine molecule (∼5 s −1 at 480 mV overpotential) with stable CO conversion over 30 h of electrolysis.
Zn-Zn porphyrin dimers have been incorporated into thin dye-sensitized solar cells (DSSCs) to boost their light harvesting efficiency. The photoexcited dimers show efficient and fast electron injection into TiO(2) indicating that both photoexcited chromophores contribute to current generation. The improved light harvesting ability coupled to enhanced DSSC performance demonstrates the potential of 3-D light harvesting arrays as next generation light harvesters for artificial solar energy conversion systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.