We extend the results of Riemannian geometry over finite groups and provide a full classification of all linear connections for the minimal noncommutative differential calculus over a finite cyclic group. We solve the torsion-free and metric compatibility condition in general and show that there are several classes of solutions, out of which only special ones are compatible with a metric that gives a Hilbert C∗-module structure on the space of the one-forms. We compute curvature and scalar curvature for these metrics and find their continuous limits.
We discuss the role of the pseudo-Riemannian structure of the finite spectral triple for the family of Pati-Salam models. We argue that its existence is a very restrictive condition that separates leptons from quarks, and restricts the whole family of Pati-Salam models into the class of generalized Left-Right Symmetric Models.
We compute the leading terms of the spectral action for a noncommutative geometry model that has no fermion doubling. The spectral triple describing it, which is chiral and allows for CP-symmetry breaking, has the Dirac operator that is not of the product type. Using Wick rotation we derive explicitly the Lagrangian of the model from the spectral action for a flat metric, demonstrating the appearance of the topological θ-terms for the electroweak gauge fields.
We define bilinear functionals of vector fields and differential forms, the densities of which yield the metric and Einstein tensors on even-dimensional Riemannian manifolds. We generalise these concepts in non-commutative geometry and, in particular, we prove that for the conformally rescaled geometry of the noncommutative two-torus the Einstein functional vanishes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.