Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. ?? 2013 Elsevier B.V. All rights reserved
We have developed a system for the simultaneous measurement of the electrical conductivity and the Seebeck coefficient for thermoelectric samples in the temperature region of 300 K to 1000 K. The system features flexibility in sample dimensions and easy sample exchange. In order to verify the accuracy of the setup we have referenced our system against the NIST standard reference material 3451 and other setups and can show good agreement. The developed system has been used in the search for a possible high temperature Seebeck standard material. FeSi2 emerges as a possible candidate as this material combines properties typical for thermoelectric materials with large scale fabrication, good spatial homogeneity, and thermal stability up to 1000 K.
a b s t r a c tMagnesium silicide based solid solutions are highly attractive materials for thermoelectric energy harvesting due to their abundance and excellent thermoelectric properties. Identification and testing of suitable contacts is -besides material optimization -the major challenge in the development of thermoelectric modules. We have applied Ni contacts on doped Mg 2 Si samples using a simple one-step sintering technique. These contacts were analyzed by combining microstructural analysis with spatially resolved and temperature dependent contact resistance measurements. We observe very good adhesion, homogeneous and low contact resistances <10 lX cm 2 . as well as good stability with temperature. Three different approaches for determining the contact resistances are compared and the respective errors are discussed.
A central motivation for the development of x-ray free-electron lasers has been the prospect of timeresolved single-molecule imaging with atomic resolution. Here, we show that x-ray photoelectron diffraction-where a photoelectron emitted after x-ray absorption illuminates the molecular structure from within-can be used to image the increase of the internuclear distance during the x-ray-induced fragmentation of an O 2 molecule. By measuring the molecular-frame photoelectron emission patterns for a two-photon sequential K-shell ionization in coincidence with the fragment ions, and by sorting the data as a function of the measured kinetic energy release, we can resolve the elongation of the molecular bond by approximately 1.2 a.u. within the duration of the x-ray pulse. The experiment paves the road toward timeresolved pump-probe photoelectron diffraction imaging at high-repetition-rate x-ray free-electron lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.