Soil degradation, defined as the lowering and loss of soil functions, is becoming a serious problem worldwide and threatens agricultural production and terrestrial ecosystems. The surface residue of crops is one of the most effective erosion control measures and it increases the soil moisture content. In some areas of the world, the management of soil surface residue (SSR) is crucial for increasing soil fertility, maintaining high soil carbon levels, and reducing the degradation of soil due to rain and wind erosion. Standard methods of measuring the residue cover are time and labor intensive, but remote sensing can support the monitoring of conservation tillage practices applied to large fields. We investigated the potential of per-pixel and object-based image analysis (OBIA) for detecting and estimating the coverage of SSRs after tillage and planting practices for agricultural research fields in Iran using tillage indices for Landsat-8 and novel indices for Sentinel-2A. For validation, SSR was measured in the field through line transects at the beginning of the agricultural season (prior to autumn crop planting). Per-pixel approaches for Landsat-8 satellite images using normalized difference tillage index (NDTI) and simple tillage index (STI) yielded coefficient of determination (R2) values of 0.727 and 0.722, respectively. We developed comparable novel indices for Sentinel-2A satellite data that yielded R2 values of 0.760 and 0.759 for NDTI and STI, respectively, which means that the Sentinel data better matched the ground truth data. We tested several OBIA methods and achieved very high overall accuracies of up to 0.948 for Sentinel-2A and 0.891 for Landsat-8 with a membership function method. The OBIA methods clearly outperformed per-pixel approaches in estimating SSR and bear the potential to substitute or complement ground-based techniques.
Conservation tillage methods through leaving the crop residue cover (CRC) on the soil surface protect it from water and wind erosions. Hence, the percentage of the CRC on the soil surface is very critical for the evaluation of tillage intensity. The objective of this study was to develop a new methodology based on the semiautomated fuzzy object based image analysis (fuzzy OBIA) and compare its efficiency with two machine learning algorithms which include: support vector machine (SVM) and artificial neural network (ANN) for the evaluation of the previous CRC and tillage intensity. We also considered the spectral images from two remotely sensed platforms of the unmanned aerial vehicle (UAV) and Sentinel-2 satellite, respectively. The results indicated that fuzzy OBIA for multispectral Sentinel-2 image based on Gaussian membership function with overall accuracy and Cohen’s kappa of 0.920 and 0.874, respectively, surpassed machine learning algorithms and represented the useful results for the classification of tillage intensity. The results also indicated that overall accuracy and Cohen’s kappa for the classification of RGB images from the UAV using fuzzy OBIA method were 0.860 and 0.779, respectively. The semiautomated fuzzy OBIA clearly outperformed machine learning approaches in estimating the CRC and the classification of the tillage methods and also it has the potential to substitute or complement field techniques.
Purpose In the past three decades, remote sensing-based models for estimating crop yield have addressed critical problems of general food security, as the unavailability of grains such as rice creates serious worldwide food insecurity problems. The main purpose of this study was to compare the potential of time-series Landsat-8 and Sentinel-2 data to predict rice yield several weeks before harvest on a regional scale. Design/methodology/approach To this end, the sum of normalized difference vegetation index (NDVI)-based models created the best agreement with actual yield data at the golden time window of six weeks before harvest when rice grains were in milky and mature growth stages. The application of nine other vegetation indicators was also investigated in the golden time window in comparison to NDVI. Findings The findings of this study demonstrate the viability of identifying locations with poor and superior performance in terms of production management approaches through a rapid and economical solution for early rice grain yield assessment. Results indicated that while some of those, such as enhanced vegetation index (EVI) and optimized soil adjusted vegetation index, were able to estimate rice yield with high accuracy, NDVI is still the best indicator to predict rice yield before harvest. However, experiments can be conducted in different regions in future studies to evaluate the generalizability of the approach. Originality/value To achieve this objective, the authors considered the following purposes: using Sentinel-2 time-series data, determining the appropriate growth stage for estimating rice yield and evaluating different vegetation indices for estimating rice yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.