Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter we study the in uence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma of only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16)GPa. Such oxide layers can cause a reduction of the e ective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide lm thickness. An oxide layer of 1.5nm grown in just 10s in a 50W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be e ciently removed in bu ered HF
Nanomechanical silicon nitride (SiN) drum resonators are currently employed in various fields of applications that arise from their unprecedented frequency response to physical quantities. In the present study, we investigate the thermal transport in nanomechanical SiN drum resonators by analytical modeling, computational simulations, and experiments for a better understanding of the underlying heat transfer mechanism causing the thermal frequency response. Our analysis shows that radiative heat loss is a non-negligible heat transfer mechanism in nanomechanical SiN resonators, limiting their thermal responsivity and response time. This finding is important for optimal resonator designs for thermal sensing applications as well as cavity optomechanics.
High quality factor (Q) nanomechanical resonators have received a lot of attention for sensor applications with unprecedented sensitivity. Despite the large interest, few investigations into the frequency stability of high-Q resonators have been reported. Such resonators are characterized by a linewidth significantly smaller than typically employed measurement bandwidths, which is the opposite regime to what is normally considered for sensors. Here, the frequency stability of high-Q silicon nitride string resonators is investigated both in open-loop and closed-loop configurations. The stability is here characterized using the Allan deviation. For open-loop tracking, it is found that the Allan deviation gets separated into two regimes, one limited by the thermomechanical noise of the resonator and the other by the detection noise of the optical transduction system. The point of transition between the two regimes is the resonator response time, which can be shown to have a linear dependence on Q. Laser power fluctuations from the optical readout are found to present a fundamental limit to the frequency stability. Finally, for closed-loop measurements, the response time is shown to no longer be intrinsically limited but instead given by the bandwidth of the closed-loop tracking system. Computed Allan deviations based on theory are given as well and found to agree well with the measurements. These results are of importance for the understanding of fundamental limitations of high-Q resonators and their application as high performance sensors.
Nanomechanical resonators based on strained silicon nitride (Si 3 N 4 ) have received a large amount of attention in fields such as sensing and quantum optomechanics due to their exceptionally high quality factors (Qs). Room-temperature Qs approaching 1 billion are now in reach by means of phononic crystals (soft-clamping) and strain engineering. Despite great progress in enhancing Qs, difficulties in fabrication of soft-clamped samples limits their implementation into actual devices. An alternative means of achieving ultra-high Qs was shown using trampoline resonators with engineered clamps, which serves to localize the stress to the center of the resonator, while minimizing stress at the clamping. The effectiveness of this approach has since come into question from recent studies employing string resonators with clamptapering. Here, we investigate this idea using nanomechanical string resonators with engineered clampings similar to those presented for trampolines. Importantly, the effect of orienting the strings diagonally or perpendicularly with respect to the silicon frame is investigated. It is found that increasing the clamp width for diagonal strings slightly increases the Qs of the fundamental out-of-plane mode at small radii, while perpendicular strings only deteriorate with increasing clamp width. Measured Qs agree well with finite element method simulations even for higher-order resonances. The small increase cannot account for previously reported Qs of trampoline resonators. Instead, we propose the effect to be intrinsic and related to surface and radiation losses.
Subnanometer displacement detection lays the solid foundation for critical applications in modern metrology. In-plane displacement sensing, however, is mainly dominated by the detection of differential photocurrent signals from photodiodes, with resolution in the nanometer range. Here, we present an integrated nanoelectromechanical in-plane displacement sensor based on a nanoelectromechanical trampoline resonator. With a position resolution of 4 pm/ for a low laser power of 85 μW and a repeatability of 2 nm after five cycles of operation as well as good long-term stability, this new detection principle provides a reliable alternative for overcoming the current position detection limit in a wide variety of research and application fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.