When a flexible fuzzy rule structure such as those with antecedent in conjunctive normal form is used, the interpretability of the obtained fuzzy model is significantly improved. However, some important problems appear related to the interaction among this set of rules. Indeed, it is relatively easy to get inconsistencies, lack of completeness, redundancies, etc. Generally, these properties are ignored or mildly faced. This paper, however, focuses on the design of a multiobjective genetic algorithm that properly considers all these properties thus ensuring an effective search space exploration and generation of highly legible and accurate fuzzy models.
In recent years, the energy-awareness has become one of the most interesting areas in our environmentally conscious society. Algorithm designers have been part of this, particularly when dealing with networked devices and, mainly, when handheld ones are involved. Although studies in this area has increased, not many of them have focused on Evolutionary Algorithms. To the best of our knowledge, few attempts have been performed before for modeling their energy consumption considering different execution devices. In this work, we propose a fuzzy rulebased system to predict energy comsumption of a kind of Evolutionary Algorithm, Genetic Prohramming, given the device in wich it will be executed, its main parameters, and a measurement of the difficulty of the problem addressed. Experimental results performed show that the proposed model can predict energy consumption with very low error values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.